All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.learning.legacy.AdaGrad Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.learning.legacy;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.util.ArrayUtil;
import java.io.Serializable;
import static org.nd4j.linalg.ops.transforms.Transforms.sqrt;
/**
* Legacy AdaGrad implementation for use in NLP etc applications
*/
@Data
@NoArgsConstructor
public class AdaGrad implements Serializable {
public static final double DEFAULT_ADAGRAD_EPSILON = 1e-6;
public INDArray historicalGradient;
public long[] shape;
protected double learningRate = 1e-1; // learning rate
protected int numIterations = 0;
private double epsilon = DEFAULT_ADAGRAD_EPSILON;
private char gradientReshapeOrder;
public int stateSizeForInputSize(int inputSize) {
return inputSize;
}
public void setStateViewArray(INDArray viewArray, int[] gradientShape, char gradientOrder, boolean initialize) {
setStateViewArray(viewArray, ArrayUtil.toLongArray(gradientShape), gradientOrder, initialize);
}
public void setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize) {
if (!viewArray.isRowVector() && !(viewArray.rank() == 2 && viewArray.columns() == 1 && viewArray.rows() == 1))
throw new IllegalArgumentException("Invalid input: expect row vector input");
if (initialize)
viewArray.assign(epsilon);
this.historicalGradient = viewArray;
//Reshape to match the expected shape of the input gradient arrays
this.historicalGradient = Shape.newShapeNoCopy(this.historicalGradient, gradientShape, gradientOrder == 'f');
if (historicalGradient == null)
throw new IllegalStateException("Could not correctly reshape gradient view array");
this.gradientReshapeOrder = gradientOrder;
}
/**
* @param rows
* @param cols
* @param learningRate
*/
public AdaGrad(int rows, int cols, double learningRate) {
this.shape = new long[] {rows, cols};
this.learningRate = learningRate;
}
public AdaGrad(int rows, int cols) {
this(rows, cols, 0.1);
}
public AdaGrad(long[] shape, double learningRate) {
this.shape = shape;
this.learningRate = learningRate;
}
public AdaGrad(double learningRate) {
this.learningRate = learningRate;
}
public AdaGrad(double learningRate, double epsilon) {
this.learningRate = learningRate;
this.epsilon = epsilon;
}
public void update(Object... args) {
if (args.length > 0) {
learningRate = (Double) args[0];
}
}
/**
* Gets feature specific learning rates
* Adagrad keeps a history of gradients being passed in.
* Note that each gradient passed in becomes adapted over time, hence
* the opName adagrad
*
* @param gradient the gradient to get learning rates for
* @param iteration
* @return the feature specific learning rates
*/
public INDArray getGradient(INDArray gradient, int iteration) {
if (historicalGradient == null)
throw new IllegalStateException("Updater has not been initialized with view state");
historicalGradient.addi(gradient.mul(gradient));
INDArray sqrtHistory = sqrt(historicalGradient.dup(gradientReshapeOrder), false).addi(epsilon);
// lr * gradient / (sqrt(sumSquaredGradients) + epsilon)
INDArray ret = gradient.muli(sqrtHistory.rdivi(learningRate));
numIterations++;
return ret;
}
public double getGradient(double gradient, int column, long[] shape) {
boolean historicalInitialized = false;
if (this.historicalGradient == null) {
this.historicalGradient = Nd4j.ones(shape);
historicalInitialized = true;
}
double sqrtHistory = !historicalInitialized ? Math.sqrt(historicalGradient.getDouble(column))
: historicalGradient.getDouble(column);
double learningRates = learningRate / (sqrtHistory + epsilon);
double adjustedGradient = gradient * (learningRates);
historicalGradient.putScalar(column, historicalGradient.getDouble(column) + gradient * gradient);
numIterations++;
//ensure no zeros
return adjustedGradient;
}
public INDArray getGradient(INDArray gradient, int slice, long[] shape) {
boolean historicalInitialized = false;
INDArray sqrtHistory;
if (this.historicalGradient == null) {
this.historicalGradient = Nd4j.zeros(shape).add(epsilon);
historicalInitialized = true;
} else if (!this.historicalGradient.isVector()
&& this.historicalGradient.slice(slice).length() != gradient.length())
throw new IllegalArgumentException("Illegal gradient");
if (historicalGradient.isVector())
sqrtHistory = sqrt(historicalGradient);
else
sqrtHistory = !historicalInitialized ? sqrt(historicalGradient.slice(slice)) : historicalGradient;
INDArray learningRates;
try {
learningRates = sqrtHistory.rdivi(learningRate);
} catch (ArithmeticException ae) {
learningRates = sqrtHistory.rdivi(learningRate + epsilon);
}
if (gradient.length() != learningRates.length())
gradient.muli(learningRates.slice(slice));
else
gradient.muli(learningRates);
this.historicalGradient.slice(slice).addi(gradient.mul(gradient));
numIterations++;
//ensure no zeros
return gradient;
}
public AdaGrad createSubset(int index) {
if (historicalGradient == null)
this.historicalGradient = Nd4j.ones(shape);
if (Shape.isMatrix(shape)) {
AdaGrad a = new AdaGrad(1, historicalGradient.columns());
//grab only the needed elements
INDArray slice = historicalGradient.slice(index).dup();
a.historicalGradient = slice;
a.setLearningRate(learningRate);
return a;
} else {
AdaGrad a = new AdaGrad(1, 1);
//grab only the needed elements
INDArray slice = Nd4j.scalar(historicalGradient.getDouble(index));
a.historicalGradient = slice;
a.setLearningRate(learningRate);
return a;
}
}
}