Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.lossfunctions.impl;
import lombok.EqualsAndHashCode;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.ops.transforms.Transforms;
import org.nd4j.common.primitives.Pair;
import java.util.Arrays;
/**
* Created by susaneraly on 9/9/16.
*/
@EqualsAndHashCode
public class LossCosineProximity implements ILossFunction {
/**
*
* @param labels
* @param preOutput
* @param activationFn
* @param mask
* @return
*/
public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
if(!labels.equalShapes(preOutput)){
Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape());
}
labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype
/*
mean of -(y.dot(yhat)/||y||*||yhat||)
*/
INDArray postOutput = activationFn.getActivation(preOutput.dup(), true);
INDArray yhatmag = postOutput.norm2(1);
INDArray ymag = labels.norm2(1);
yhatmag = Transforms.max(yhatmag, Nd4j.EPS_THRESHOLD, false);
ymag = Transforms.max(ymag, Nd4j.EPS_THRESHOLD, false);
INDArray scoreArr = postOutput.mul(labels);
scoreArr.diviColumnVector(yhatmag);
scoreArr.diviColumnVector(ymag);
if (mask != null) {
if (!mask.isColumnVector()) {
//Per-output masking doesn't really make sense for cosine proximity
throw new UnsupportedOperationException("Expected column vector mask array for LossCosineProximity."
+ " Got mask array with shape " + Arrays.toString(mask.shape())
+ "; per-output masking is not " + "supported for LossCosineProximity");
}
scoreArr.muliColumnVector(mask);
}
return scoreArr.muli(-1);
}
@Override
public double computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask,
boolean average) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
double score = scoreArr.sumNumber().doubleValue();
if (average)
score /= scoreArr.size(0);
return score;
}
@Override
public INDArray computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
return scoreArr.sum(true,1);
}
@Override
public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
if(!labels.equalShapes(preOutput)){
Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape());
}
labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype
INDArray yhat = activationFn.getActivation(preOutput.dup(), true);
INDArray yL2norm = labels.norm2(1);
INDArray yhatL2norm = yhat.norm2(1);
INDArray yhatL2normSq = yhatL2norm.mul(yhatL2norm);
//Note: This is not really the L1 norm since I am not taking abs values
INDArray yhatDotyL1norm = labels.mul(yhat).sum(true,1);
INDArray dLda = labels.mulColumnVector(yhatL2normSq);
dLda.subi(yhat.mulColumnVector(yhatDotyL1norm));
// transform vals to avoid nans before div
yL2norm = Transforms.max(yL2norm, Nd4j.EPS_THRESHOLD, false);
yhatL2norm = Transforms.max(yhatL2norm, Nd4j.EPS_THRESHOLD, false);
yhatL2normSq = Transforms.max(yhatL2normSq, Nd4j.EPS_THRESHOLD, false);
dLda.diviColumnVector(yL2norm);
dLda.diviColumnVector(yhatL2norm.mul(yhatL2normSq));
dLda.muli(-1);
//dL/dz
INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO loss functions with params
if (mask != null) {
gradients.muliColumnVector(mask);
}
return gradients;
}
@Override
public Pair computeGradientAndScore(INDArray labels,
INDArray preOutput, IActivation activationFn, INDArray mask, boolean average) {
//TODO: probably a more efficient way to do this...
return new Pair<>(computeScore(labels, preOutput, activationFn, mask, average),
computeGradient(labels, preOutput, activationFn, mask));
}
/**
* The opName of this function
*
* @return
*/
@Override
public String name() {
return toString();
}
@Override
public String toString() {
return "LossCosineProximity()";
}
}