All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.lossfunctions.impl.LossMCXENT Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/* ******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 * Copyright (c) 2019 Konduit K.K.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.lossfunctions.impl;


import lombok.EqualsAndHashCode;
import lombok.Getter;
import lombok.Setter;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.activations.impl.ActivationSoftmax;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.indexing.BooleanIndexing;
import org.nd4j.linalg.indexing.conditions.Conditions;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossUtil;
import org.nd4j.linalg.ops.transforms.Transforms;
import org.nd4j.common.primitives.Pair;
import org.nd4j.serde.jackson.shaded.NDArrayTextDeSerializer;
import org.nd4j.serde.jackson.shaded.NDArrayTextSerializer;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;

/**
 *
 * Multi-Class Cross Entropy loss function:
* L = sum_i actual_i * log( predicted_i )
* Note that labels are represented by a one-hot distribution
* See {@link LossSparseMCXENT} for the equivalent but with labels as integers instead * * @author Alex Black, Susan Eraly * @see LossNegativeLogLikelihood * @see LossSparseMCXENT */ @EqualsAndHashCode @JsonInclude(JsonInclude.Include.NON_NULL) @Getter @Setter public class LossMCXENT implements ILossFunction { private static final double DEFAULT_SOFTMAX_CLIPPING_EPSILON = 1e-10; @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) protected INDArray weights; protected double softmaxClipEps; public LossMCXENT() { this(null); } /** * Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a flags scalar value. * Note that the weights array must be a row vector, of length equal to the labels/output dimension 1 size. * A weight vector of 1s should give identical results to no weight vector. * * @param weights Weights array (row vector). May be null. */ public LossMCXENT(INDArray weights) { this(DEFAULT_SOFTMAX_CLIPPING_EPSILON, weights); } /** * Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a fixed scalar value. * Note that the weights array must be a row vector, of length equal to the labels/output dimension 1 size. * A weight vector of 1s should give identical results to no weight vector. * * @param weights Weights array (row vector). May be null. */ public LossMCXENT(@JsonProperty("softmaxClipEps") double softmaxClipEps, @JsonProperty("weights") INDArray weights) { if (weights != null && !weights.isRowVector()) { throw new IllegalArgumentException("Weights array must be a row vector"); } if(softmaxClipEps < 0 || softmaxClipEps > 0.5){ throw new IllegalArgumentException("Invalid clipping epsilon: epsilon should be >= 0 (but near zero). Got: " + softmaxClipEps); } this.weights = weights; this.softmaxClipEps = softmaxClipEps; } protected INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); if(activationFn instanceof ActivationSoftmax && softmaxClipEps > 0.0){ BooleanIndexing.replaceWhere(output, softmaxClipEps, Conditions.lessThan(softmaxClipEps)); BooleanIndexing.replaceWhere(output, 1.0-softmaxClipEps, Conditions.greaterThan(1.0-softmaxClipEps)); } INDArray scoreArr = Transforms.log(output, false).muli(labels); //Weighted loss function if (weights != null) { if (weights.length() != scoreArr.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + preOutput.size(1)); } scoreArr.muliRowVector(weights.castTo(scoreArr.dataType())); } if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; } @Override public double computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average) { INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask); double score = -scoreArr.sumNumber().doubleValue(); if (average) { score /= scoreArr.size(0); } return score; } @Override public INDArray computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask); return scoreArr.sum(true,1).muli(-1); } @Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } INDArray grad; INDArray output = activationFn.getActivation(preOutput.dup(), true); labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype if (activationFn instanceof ActivationSoftmax) { if (mask != null && LossUtil.isPerOutputMasking(output, mask)) { throw new UnsupportedOperationException("Per output masking for MCXENT + softmax: not supported"); } //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } INDArray temp = labels.mulRowVector(weights.castTo(labels.dataType())); INDArray col = temp.sum(true,1); grad = output.mulColumnVector(col).sub(temp); } else { grad = output.subi(labels); } } else { INDArray dLda = output.rdivi(labels).negi(); grad = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation function with weights //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } grad.muliRowVector(weights.castTo(grad.dataType())); } } //Loss function with masking if (mask != null) { LossUtil.applyMask(grad, mask); } return grad; } @Override public Pair computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average) { //TODO: probably a more efficient way to do this... return new Pair<>(computeScore(labels, preOutput, activationFn, mask, average), computeGradient(labels, preOutput, activationFn, mask)); } /** * The opName of this function * * @return */ @Override public String name() { return toString(); } @Override public String toString() { if (weights == null) return "LossMCXENT()"; return "LossMCXENT(weights=" + weights + ")"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy