All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.lossfunctions.impl.LossSparseMCXENT Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/* ******************************************************************************
 * Copyright (c) 2019 Konduit K.K.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.lossfunctions.impl;


import lombok.EqualsAndHashCode;
import lombok.Getter;
import lombok.Setter;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.shape.OneHot;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;

/**
 *
 * Sparse Multi-Class Cross Entropy loss function:
* L = sum_i actual_i * log( predicted_i )
* Note: this is the same loss function as {@link LossMCXENT}, the only difference being the format for the labels - * this loss function uses integer indices (zero indexed) for the loss array, whereas LossMCXENT uses the equivalent * one-hot representation * * @author Alex Black * @see LossNegativeLogLikelihood * @see LossMCXENT */ @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) @Getter @Setter public class LossSparseMCXENT extends LossMCXENT { private static final double DEFAULT_SOFTMAX_CLIPPING_EPSILON = 1e-10; public LossSparseMCXENT() { this(null); } /** * Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a flags scalar value. * Note that the weights array must be a row vector, of length equal to the labels/output dimension 1 size. * A weight vector of 1s should give identical results to no weight vector. * * @param weights Weights array (row vector). May be null. */ public LossSparseMCXENT(INDArray weights) { this(DEFAULT_SOFTMAX_CLIPPING_EPSILON, weights); } /** * Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a fixed scalar value. * Note that the weights array must be a row vector, of length equal to the labels/output dimension 1 size. * A weight vector of 1s should give identical results to no weight vector. * * @param weights Weights array (row vector). May be null. */ public LossSparseMCXENT(@JsonProperty("softmaxClipEps") double softmaxClipEps, @JsonProperty("weights") INDArray weights) { super(softmaxClipEps, weights); } protected INDArray sparseScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { INDArray oneHotLabels = toOneHot(labels, preOutput); return super.scoreArray(oneHotLabels, preOutput, activationFn, mask); } @Override public double computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average) { INDArray oneHotLabels = toOneHot(labels, preOutput); return super.computeScore(oneHotLabels, preOutput, activationFn, mask, average); } @Override public INDArray computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { INDArray scoreArr = sparseScoreArray(labels, preOutput, activationFn, mask); return scoreArr.sum(true,1).muli(-1); } @Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { INDArray oneHotLabels = toOneHot(labels, preOutput); return super.computeGradient(oneHotLabels, preOutput, activationFn, mask); } @Override public Pair computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average) { INDArray oneHotLabels = toOneHot(labels, preOutput); return new Pair<>(super.computeScore(oneHotLabels, preOutput, activationFn, mask, average), super.computeGradient(oneHotLabels, preOutput, activationFn, mask)); } private INDArray toOneHot(INDArray labels, INDArray preOutput){ Preconditions.checkState(labels.size(-1) == 1, "Labels for LossSparseMCXENT should be an array of integers " + "with first dimension equal to minibatch size, and last dimension having size 1. Got labels array with shape %ndShape", labels); INDArray oneHotLabels = preOutput.ulike(); Nd4j.exec(new OneHot(labels.reshape(labels.length()), oneHotLabels, (int)preOutput.size(-1))); return oneHotLabels; } @Override public String toString() { if (weights == null) return "LossSparseMCXENT()"; return "LossSparseMCXENT(weights=" + weights + ")"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy