Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.lossfunctions.impl;
import lombok.EqualsAndHashCode;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossUtil;
import org.nd4j.common.primitives.Pair;
/**
* Wasserstein loss function, which calculates the Wasserstein distance, also known as earthmover's distance.
*
* This is not necessarily a general purpose loss function, and is intended for use as a discriminator loss.
*
* When using in a discriminator, use a label of 1 for real and -1 for generated
* instead of the 1 and 0 used in normal GANs.
*
* As described in Learning with a Wasserstein Loss
*
* @author Ryan Nett
*/
@EqualsAndHashCode(callSuper = false)
public class LossWasserstein implements ILossFunction {
private INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask){
if(!labels.equalShapes(preOutput)){
Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape());
}
labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype
INDArray output = activationFn.getActivation(preOutput.dup(), true);
INDArray scoreArr = labels.mul(output);
if (mask != null) {
LossUtil.applyMask(scoreArr, mask);
}
return scoreArr;
}
@Override
public double computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask,
boolean average) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
double score = scoreArr.mean(1).sumNumber().doubleValue();
if (average) {
score /= scoreArr.size(0);
}
return score;
}
@Override
public INDArray computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
return Nd4j.expandDims(scoreArr.mean(1), 1);
}
@Override
public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
if(!labels.equalShapes(preOutput)){
Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape());
}
labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype
INDArray dLda = labels.div(labels.size(1));
if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) {
LossUtil.applyMask(labels, mask);
}
INDArray grad = activationFn.backprop(preOutput, dLda).getFirst();
if (mask != null) {
LossUtil.applyMask(grad, mask);
}
return grad;
}
@Override
public Pair computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn,
INDArray mask, boolean average) {
return new Pair<>(computeScore(labels, preOutput, activationFn, mask, average),
computeGradient(labels, preOutput, activationFn, mask));
}
@Override
public String name() {
return toString();
}
@Override
public String toString() {
return "LossWasserstein()";
}
}