All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.util.BundleEntryProto Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow/core/protobuf/tensor_bundle.proto

package org.tensorflow.util;

/**
 * 
 * Describes the metadata related to a checkpointed tensor.
 * 
* * Protobuf type {@code tensorflow.BundleEntryProto} */ public final class BundleEntryProto extends org.nd4j.shade.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.BundleEntryProto) BundleEntryProtoOrBuilder { private static final long serialVersionUID = 0L; // Use BundleEntryProto.newBuilder() to construct. private BundleEntryProto(org.nd4j.shade.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private BundleEntryProto() { dtype_ = 0; shardId_ = 0; offset_ = 0L; size_ = 0L; crc32C_ = 0; slices_ = java.util.Collections.emptyList(); } @java.lang.Override public final org.nd4j.shade.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private BundleEntryProto( org.nd4j.shade.protobuf.CodedInputStream input, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws org.nd4j.shade.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; org.nd4j.shade.protobuf.UnknownFieldSet.Builder unknownFields = org.nd4j.shade.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 8: { int rawValue = input.readEnum(); dtype_ = rawValue; break; } case 18: { org.tensorflow.framework.TensorShapeProto.Builder subBuilder = null; if (shape_ != null) { subBuilder = shape_.toBuilder(); } shape_ = input.readMessage(org.tensorflow.framework.TensorShapeProto.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(shape_); shape_ = subBuilder.buildPartial(); } break; } case 24: { shardId_ = input.readInt32(); break; } case 32: { offset_ = input.readInt64(); break; } case 40: { size_ = input.readInt64(); break; } case 53: { crc32C_ = input.readFixed32(); break; } case 58: { if (!((mutable_bitField0_ & 0x00000040) == 0x00000040)) { slices_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000040; } slices_.add( input.readMessage(org.tensorflow.framework.TensorSliceProto.parser(), extensionRegistry)); break; } } } } catch (org.nd4j.shade.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new org.nd4j.shade.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { if (((mutable_bitField0_ & 0x00000040) == 0x00000040)) { slices_ = java.util.Collections.unmodifiableList(slices_); } this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final org.nd4j.shade.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_descriptor; } protected org.nd4j.shade.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.util.BundleEntryProto.class, org.tensorflow.util.BundleEntryProto.Builder.class); } private int bitField0_; public static final int DTYPE_FIELD_NUMBER = 1; private int dtype_; /** *
   * The tensor dtype and shape.
   * 
* * .tensorflow.DataType dtype = 1; */ public int getDtypeValue() { return dtype_; } /** *
   * The tensor dtype and shape.
   * 
* * .tensorflow.DataType dtype = 1; */ public org.tensorflow.framework.DataType getDtype() { org.tensorflow.framework.DataType result = org.tensorflow.framework.DataType.valueOf(dtype_); return result == null ? org.tensorflow.framework.DataType.UNRECOGNIZED : result; } public static final int SHAPE_FIELD_NUMBER = 2; private org.tensorflow.framework.TensorShapeProto shape_; /** * .tensorflow.TensorShapeProto shape = 2; */ public boolean hasShape() { return shape_ != null; } /** * .tensorflow.TensorShapeProto shape = 2; */ public org.tensorflow.framework.TensorShapeProto getShape() { return shape_ == null ? org.tensorflow.framework.TensorShapeProto.getDefaultInstance() : shape_; } /** * .tensorflow.TensorShapeProto shape = 2; */ public org.tensorflow.framework.TensorShapeProtoOrBuilder getShapeOrBuilder() { return getShape(); } public static final int SHARD_ID_FIELD_NUMBER = 3; private int shardId_; /** *
   * The binary content of the tensor lies in:
   *   File "shard_id": bytes [offset, offset + size).
   * 
* * int32 shard_id = 3; */ public int getShardId() { return shardId_; } public static final int OFFSET_FIELD_NUMBER = 4; private long offset_; /** * int64 offset = 4; */ public long getOffset() { return offset_; } public static final int SIZE_FIELD_NUMBER = 5; private long size_; /** * int64 size = 5; */ public long getSize() { return size_; } public static final int CRC32C_FIELD_NUMBER = 6; private int crc32C_; /** *
   * The CRC32C checksum of the tensor bytes.
   * 
* * fixed32 crc32c = 6; */ public int getCrc32C() { return crc32C_; } public static final int SLICES_FIELD_NUMBER = 7; private java.util.List slices_; /** *
   * Iff present, this entry represents a partitioned tensor.  The previous
   * fields are interpreted as follows:
   *   "dtype", "shape": describe the full tensor.
   *   "shard_id", "offset", "size", "crc32c": all IGNORED.
   *      These information for each slice can be looked up in their own
   *      BundleEntryProto, keyed by each "slice_name".
   * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public java.util.List getSlicesList() { return slices_; } /** *
   * Iff present, this entry represents a partitioned tensor.  The previous
   * fields are interpreted as follows:
   *   "dtype", "shape": describe the full tensor.
   *   "shard_id", "offset", "size", "crc32c": all IGNORED.
   *      These information for each slice can be looked up in their own
   *      BundleEntryProto, keyed by each "slice_name".
   * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public java.util.List getSlicesOrBuilderList() { return slices_; } /** *
   * Iff present, this entry represents a partitioned tensor.  The previous
   * fields are interpreted as follows:
   *   "dtype", "shape": describe the full tensor.
   *   "shard_id", "offset", "size", "crc32c": all IGNORED.
   *      These information for each slice can be looked up in their own
   *      BundleEntryProto, keyed by each "slice_name".
   * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public int getSlicesCount() { return slices_.size(); } /** *
   * Iff present, this entry represents a partitioned tensor.  The previous
   * fields are interpreted as follows:
   *   "dtype", "shape": describe the full tensor.
   *   "shard_id", "offset", "size", "crc32c": all IGNORED.
   *      These information for each slice can be looked up in their own
   *      BundleEntryProto, keyed by each "slice_name".
   * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public org.tensorflow.framework.TensorSliceProto getSlices(int index) { return slices_.get(index); } /** *
   * Iff present, this entry represents a partitioned tensor.  The previous
   * fields are interpreted as follows:
   *   "dtype", "shape": describe the full tensor.
   *   "shard_id", "offset", "size", "crc32c": all IGNORED.
   *      These information for each slice can be looked up in their own
   *      BundleEntryProto, keyed by each "slice_name".
   * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public org.tensorflow.framework.TensorSliceProtoOrBuilder getSlicesOrBuilder( int index) { return slices_.get(index); } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } public void writeTo(org.nd4j.shade.protobuf.CodedOutputStream output) throws java.io.IOException { if (dtype_ != org.tensorflow.framework.DataType.DT_INVALID.getNumber()) { output.writeEnum(1, dtype_); } if (shape_ != null) { output.writeMessage(2, getShape()); } if (shardId_ != 0) { output.writeInt32(3, shardId_); } if (offset_ != 0L) { output.writeInt64(4, offset_); } if (size_ != 0L) { output.writeInt64(5, size_); } if (crc32C_ != 0) { output.writeFixed32(6, crc32C_); } for (int i = 0; i < slices_.size(); i++) { output.writeMessage(7, slices_.get(i)); } unknownFields.writeTo(output); } public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (dtype_ != org.tensorflow.framework.DataType.DT_INVALID.getNumber()) { size += org.nd4j.shade.protobuf.CodedOutputStream .computeEnumSize(1, dtype_); } if (shape_ != null) { size += org.nd4j.shade.protobuf.CodedOutputStream .computeMessageSize(2, getShape()); } if (shardId_ != 0) { size += org.nd4j.shade.protobuf.CodedOutputStream .computeInt32Size(3, shardId_); } if (offset_ != 0L) { size += org.nd4j.shade.protobuf.CodedOutputStream .computeInt64Size(4, offset_); } if (size_ != 0L) { size += org.nd4j.shade.protobuf.CodedOutputStream .computeInt64Size(5, size_); } if (crc32C_ != 0) { size += org.nd4j.shade.protobuf.CodedOutputStream .computeFixed32Size(6, crc32C_); } for (int i = 0; i < slices_.size(); i++) { size += org.nd4j.shade.protobuf.CodedOutputStream .computeMessageSize(7, slices_.get(i)); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.util.BundleEntryProto)) { return super.equals(obj); } org.tensorflow.util.BundleEntryProto other = (org.tensorflow.util.BundleEntryProto) obj; boolean result = true; result = result && dtype_ == other.dtype_; result = result && (hasShape() == other.hasShape()); if (hasShape()) { result = result && getShape() .equals(other.getShape()); } result = result && (getShardId() == other.getShardId()); result = result && (getOffset() == other.getOffset()); result = result && (getSize() == other.getSize()); result = result && (getCrc32C() == other.getCrc32C()); result = result && getSlicesList() .equals(other.getSlicesList()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + DTYPE_FIELD_NUMBER; hash = (53 * hash) + dtype_; if (hasShape()) { hash = (37 * hash) + SHAPE_FIELD_NUMBER; hash = (53 * hash) + getShape().hashCode(); } hash = (37 * hash) + SHARD_ID_FIELD_NUMBER; hash = (53 * hash) + getShardId(); hash = (37 * hash) + OFFSET_FIELD_NUMBER; hash = (53 * hash) + org.nd4j.shade.protobuf.Internal.hashLong( getOffset()); hash = (37 * hash) + SIZE_FIELD_NUMBER; hash = (53 * hash) + org.nd4j.shade.protobuf.Internal.hashLong( getSize()); hash = (37 * hash) + CRC32C_FIELD_NUMBER; hash = (53 * hash) + getCrc32C(); if (getSlicesCount() > 0) { hash = (37 * hash) + SLICES_FIELD_NUMBER; hash = (53 * hash) + getSlicesList().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.util.BundleEntryProto parseFrom( java.nio.ByteBuffer data) throws org.nd4j.shade.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.util.BundleEntryProto parseFrom( java.nio.ByteBuffer data, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws org.nd4j.shade.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.util.BundleEntryProto parseFrom( org.nd4j.shade.protobuf.ByteString data) throws org.nd4j.shade.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.util.BundleEntryProto parseFrom( org.nd4j.shade.protobuf.ByteString data, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws org.nd4j.shade.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.util.BundleEntryProto parseFrom(byte[] data) throws org.nd4j.shade.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.util.BundleEntryProto parseFrom( byte[] data, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws org.nd4j.shade.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.util.BundleEntryProto parseFrom(java.io.InputStream input) throws java.io.IOException { return org.nd4j.shade.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.util.BundleEntryProto parseFrom( java.io.InputStream input, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return org.nd4j.shade.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.util.BundleEntryProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return org.nd4j.shade.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.util.BundleEntryProto parseDelimitedFrom( java.io.InputStream input, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return org.nd4j.shade.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.util.BundleEntryProto parseFrom( org.nd4j.shade.protobuf.CodedInputStream input) throws java.io.IOException { return org.nd4j.shade.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.util.BundleEntryProto parseFrom( org.nd4j.shade.protobuf.CodedInputStream input, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return org.nd4j.shade.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.util.BundleEntryProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( org.nd4j.shade.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
   * Describes the metadata related to a checkpointed tensor.
   * 
* * Protobuf type {@code tensorflow.BundleEntryProto} */ public static final class Builder extends org.nd4j.shade.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.BundleEntryProto) org.tensorflow.util.BundleEntryProtoOrBuilder { public static final org.nd4j.shade.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_descriptor; } protected org.nd4j.shade.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.util.BundleEntryProto.class, org.tensorflow.util.BundleEntryProto.Builder.class); } // Construct using org.tensorflow.util.BundleEntryProto.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( org.nd4j.shade.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (org.nd4j.shade.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getSlicesFieldBuilder(); } } public Builder clear() { super.clear(); dtype_ = 0; if (shapeBuilder_ == null) { shape_ = null; } else { shape_ = null; shapeBuilder_ = null; } shardId_ = 0; offset_ = 0L; size_ = 0L; crc32C_ = 0; if (slicesBuilder_ == null) { slices_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000040); } else { slicesBuilder_.clear(); } return this; } public org.nd4j.shade.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_descriptor; } public org.tensorflow.util.BundleEntryProto getDefaultInstanceForType() { return org.tensorflow.util.BundleEntryProto.getDefaultInstance(); } public org.tensorflow.util.BundleEntryProto build() { org.tensorflow.util.BundleEntryProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } public org.tensorflow.util.BundleEntryProto buildPartial() { org.tensorflow.util.BundleEntryProto result = new org.tensorflow.util.BundleEntryProto(this); int from_bitField0_ = bitField0_; int to_bitField0_ = 0; result.dtype_ = dtype_; if (shapeBuilder_ == null) { result.shape_ = shape_; } else { result.shape_ = shapeBuilder_.build(); } result.shardId_ = shardId_; result.offset_ = offset_; result.size_ = size_; result.crc32C_ = crc32C_; if (slicesBuilder_ == null) { if (((bitField0_ & 0x00000040) == 0x00000040)) { slices_ = java.util.Collections.unmodifiableList(slices_); bitField0_ = (bitField0_ & ~0x00000040); } result.slices_ = slices_; } else { result.slices_ = slicesBuilder_.build(); } result.bitField0_ = to_bitField0_; onBuilt(); return result; } public Builder clone() { return (Builder) super.clone(); } public Builder setField( org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } public Builder clearField( org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } public Builder clearOneof( org.nd4j.shade.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } public Builder setRepeatedField( org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } public Builder addRepeatedField( org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } public Builder mergeFrom(org.nd4j.shade.protobuf.Message other) { if (other instanceof org.tensorflow.util.BundleEntryProto) { return mergeFrom((org.tensorflow.util.BundleEntryProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.util.BundleEntryProto other) { if (other == org.tensorflow.util.BundleEntryProto.getDefaultInstance()) return this; if (other.dtype_ != 0) { setDtypeValue(other.getDtypeValue()); } if (other.hasShape()) { mergeShape(other.getShape()); } if (other.getShardId() != 0) { setShardId(other.getShardId()); } if (other.getOffset() != 0L) { setOffset(other.getOffset()); } if (other.getSize() != 0L) { setSize(other.getSize()); } if (other.getCrc32C() != 0) { setCrc32C(other.getCrc32C()); } if (slicesBuilder_ == null) { if (!other.slices_.isEmpty()) { if (slices_.isEmpty()) { slices_ = other.slices_; bitField0_ = (bitField0_ & ~0x00000040); } else { ensureSlicesIsMutable(); slices_.addAll(other.slices_); } onChanged(); } } else { if (!other.slices_.isEmpty()) { if (slicesBuilder_.isEmpty()) { slicesBuilder_.dispose(); slicesBuilder_ = null; slices_ = other.slices_; bitField0_ = (bitField0_ & ~0x00000040); slicesBuilder_ = org.nd4j.shade.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getSlicesFieldBuilder() : null; } else { slicesBuilder_.addAllMessages(other.slices_); } } } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } public final boolean isInitialized() { return true; } public Builder mergeFrom( org.nd4j.shade.protobuf.CodedInputStream input, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { org.tensorflow.util.BundleEntryProto parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (org.nd4j.shade.protobuf.InvalidProtocolBufferException e) { parsedMessage = (org.tensorflow.util.BundleEntryProto) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private int dtype_ = 0; /** *
     * The tensor dtype and shape.
     * 
* * .tensorflow.DataType dtype = 1; */ public int getDtypeValue() { return dtype_; } /** *
     * The tensor dtype and shape.
     * 
* * .tensorflow.DataType dtype = 1; */ public Builder setDtypeValue(int value) { dtype_ = value; onChanged(); return this; } /** *
     * The tensor dtype and shape.
     * 
* * .tensorflow.DataType dtype = 1; */ public org.tensorflow.framework.DataType getDtype() { org.tensorflow.framework.DataType result = org.tensorflow.framework.DataType.valueOf(dtype_); return result == null ? org.tensorflow.framework.DataType.UNRECOGNIZED : result; } /** *
     * The tensor dtype and shape.
     * 
* * .tensorflow.DataType dtype = 1; */ public Builder setDtype(org.tensorflow.framework.DataType value) { if (value == null) { throw new NullPointerException(); } dtype_ = value.getNumber(); onChanged(); return this; } /** *
     * The tensor dtype and shape.
     * 
* * .tensorflow.DataType dtype = 1; */ public Builder clearDtype() { dtype_ = 0; onChanged(); return this; } private org.tensorflow.framework.TensorShapeProto shape_ = null; private org.nd4j.shade.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.TensorShapeProto, org.tensorflow.framework.TensorShapeProto.Builder, org.tensorflow.framework.TensorShapeProtoOrBuilder> shapeBuilder_; /** * .tensorflow.TensorShapeProto shape = 2; */ public boolean hasShape() { return shapeBuilder_ != null || shape_ != null; } /** * .tensorflow.TensorShapeProto shape = 2; */ public org.tensorflow.framework.TensorShapeProto getShape() { if (shapeBuilder_ == null) { return shape_ == null ? org.tensorflow.framework.TensorShapeProto.getDefaultInstance() : shape_; } else { return shapeBuilder_.getMessage(); } } /** * .tensorflow.TensorShapeProto shape = 2; */ public Builder setShape(org.tensorflow.framework.TensorShapeProto value) { if (shapeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } shape_ = value; onChanged(); } else { shapeBuilder_.setMessage(value); } return this; } /** * .tensorflow.TensorShapeProto shape = 2; */ public Builder setShape( org.tensorflow.framework.TensorShapeProto.Builder builderForValue) { if (shapeBuilder_ == null) { shape_ = builderForValue.build(); onChanged(); } else { shapeBuilder_.setMessage(builderForValue.build()); } return this; } /** * .tensorflow.TensorShapeProto shape = 2; */ public Builder mergeShape(org.tensorflow.framework.TensorShapeProto value) { if (shapeBuilder_ == null) { if (shape_ != null) { shape_ = org.tensorflow.framework.TensorShapeProto.newBuilder(shape_).mergeFrom(value).buildPartial(); } else { shape_ = value; } onChanged(); } else { shapeBuilder_.mergeFrom(value); } return this; } /** * .tensorflow.TensorShapeProto shape = 2; */ public Builder clearShape() { if (shapeBuilder_ == null) { shape_ = null; onChanged(); } else { shape_ = null; shapeBuilder_ = null; } return this; } /** * .tensorflow.TensorShapeProto shape = 2; */ public org.tensorflow.framework.TensorShapeProto.Builder getShapeBuilder() { onChanged(); return getShapeFieldBuilder().getBuilder(); } /** * .tensorflow.TensorShapeProto shape = 2; */ public org.tensorflow.framework.TensorShapeProtoOrBuilder getShapeOrBuilder() { if (shapeBuilder_ != null) { return shapeBuilder_.getMessageOrBuilder(); } else { return shape_ == null ? org.tensorflow.framework.TensorShapeProto.getDefaultInstance() : shape_; } } /** * .tensorflow.TensorShapeProto shape = 2; */ private org.nd4j.shade.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.TensorShapeProto, org.tensorflow.framework.TensorShapeProto.Builder, org.tensorflow.framework.TensorShapeProtoOrBuilder> getShapeFieldBuilder() { if (shapeBuilder_ == null) { shapeBuilder_ = new org.nd4j.shade.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.TensorShapeProto, org.tensorflow.framework.TensorShapeProto.Builder, org.tensorflow.framework.TensorShapeProtoOrBuilder>( getShape(), getParentForChildren(), isClean()); shape_ = null; } return shapeBuilder_; } private int shardId_ ; /** *
     * The binary content of the tensor lies in:
     *   File "shard_id": bytes [offset, offset + size).
     * 
* * int32 shard_id = 3; */ public int getShardId() { return shardId_; } /** *
     * The binary content of the tensor lies in:
     *   File "shard_id": bytes [offset, offset + size).
     * 
* * int32 shard_id = 3; */ public Builder setShardId(int value) { shardId_ = value; onChanged(); return this; } /** *
     * The binary content of the tensor lies in:
     *   File "shard_id": bytes [offset, offset + size).
     * 
* * int32 shard_id = 3; */ public Builder clearShardId() { shardId_ = 0; onChanged(); return this; } private long offset_ ; /** * int64 offset = 4; */ public long getOffset() { return offset_; } /** * int64 offset = 4; */ public Builder setOffset(long value) { offset_ = value; onChanged(); return this; } /** * int64 offset = 4; */ public Builder clearOffset() { offset_ = 0L; onChanged(); return this; } private long size_ ; /** * int64 size = 5; */ public long getSize() { return size_; } /** * int64 size = 5; */ public Builder setSize(long value) { size_ = value; onChanged(); return this; } /** * int64 size = 5; */ public Builder clearSize() { size_ = 0L; onChanged(); return this; } private int crc32C_ ; /** *
     * The CRC32C checksum of the tensor bytes.
     * 
* * fixed32 crc32c = 6; */ public int getCrc32C() { return crc32C_; } /** *
     * The CRC32C checksum of the tensor bytes.
     * 
* * fixed32 crc32c = 6; */ public Builder setCrc32C(int value) { crc32C_ = value; onChanged(); return this; } /** *
     * The CRC32C checksum of the tensor bytes.
     * 
* * fixed32 crc32c = 6; */ public Builder clearCrc32C() { crc32C_ = 0; onChanged(); return this; } private java.util.List slices_ = java.util.Collections.emptyList(); private void ensureSlicesIsMutable() { if (!((bitField0_ & 0x00000040) == 0x00000040)) { slices_ = new java.util.ArrayList(slices_); bitField0_ |= 0x00000040; } } private org.nd4j.shade.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.TensorSliceProto, org.tensorflow.framework.TensorSliceProto.Builder, org.tensorflow.framework.TensorSliceProtoOrBuilder> slicesBuilder_; /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public java.util.List getSlicesList() { if (slicesBuilder_ == null) { return java.util.Collections.unmodifiableList(slices_); } else { return slicesBuilder_.getMessageList(); } } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public int getSlicesCount() { if (slicesBuilder_ == null) { return slices_.size(); } else { return slicesBuilder_.getCount(); } } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public org.tensorflow.framework.TensorSliceProto getSlices(int index) { if (slicesBuilder_ == null) { return slices_.get(index); } else { return slicesBuilder_.getMessage(index); } } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder setSlices( int index, org.tensorflow.framework.TensorSliceProto value) { if (slicesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSlicesIsMutable(); slices_.set(index, value); onChanged(); } else { slicesBuilder_.setMessage(index, value); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder setSlices( int index, org.tensorflow.framework.TensorSliceProto.Builder builderForValue) { if (slicesBuilder_ == null) { ensureSlicesIsMutable(); slices_.set(index, builderForValue.build()); onChanged(); } else { slicesBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder addSlices(org.tensorflow.framework.TensorSliceProto value) { if (slicesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSlicesIsMutable(); slices_.add(value); onChanged(); } else { slicesBuilder_.addMessage(value); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder addSlices( int index, org.tensorflow.framework.TensorSliceProto value) { if (slicesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSlicesIsMutable(); slices_.add(index, value); onChanged(); } else { slicesBuilder_.addMessage(index, value); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder addSlices( org.tensorflow.framework.TensorSliceProto.Builder builderForValue) { if (slicesBuilder_ == null) { ensureSlicesIsMutable(); slices_.add(builderForValue.build()); onChanged(); } else { slicesBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder addSlices( int index, org.tensorflow.framework.TensorSliceProto.Builder builderForValue) { if (slicesBuilder_ == null) { ensureSlicesIsMutable(); slices_.add(index, builderForValue.build()); onChanged(); } else { slicesBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder addAllSlices( java.lang.Iterable values) { if (slicesBuilder_ == null) { ensureSlicesIsMutable(); org.nd4j.shade.protobuf.AbstractMessageLite.Builder.addAll( values, slices_); onChanged(); } else { slicesBuilder_.addAllMessages(values); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder clearSlices() { if (slicesBuilder_ == null) { slices_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000040); onChanged(); } else { slicesBuilder_.clear(); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public Builder removeSlices(int index) { if (slicesBuilder_ == null) { ensureSlicesIsMutable(); slices_.remove(index); onChanged(); } else { slicesBuilder_.remove(index); } return this; } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public org.tensorflow.framework.TensorSliceProto.Builder getSlicesBuilder( int index) { return getSlicesFieldBuilder().getBuilder(index); } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public org.tensorflow.framework.TensorSliceProtoOrBuilder getSlicesOrBuilder( int index) { if (slicesBuilder_ == null) { return slices_.get(index); } else { return slicesBuilder_.getMessageOrBuilder(index); } } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public java.util.List getSlicesOrBuilderList() { if (slicesBuilder_ != null) { return slicesBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(slices_); } } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public org.tensorflow.framework.TensorSliceProto.Builder addSlicesBuilder() { return getSlicesFieldBuilder().addBuilder( org.tensorflow.framework.TensorSliceProto.getDefaultInstance()); } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public org.tensorflow.framework.TensorSliceProto.Builder addSlicesBuilder( int index) { return getSlicesFieldBuilder().addBuilder( index, org.tensorflow.framework.TensorSliceProto.getDefaultInstance()); } /** *
     * Iff present, this entry represents a partitioned tensor.  The previous
     * fields are interpreted as follows:
     *   "dtype", "shape": describe the full tensor.
     *   "shard_id", "offset", "size", "crc32c": all IGNORED.
     *      These information for each slice can be looked up in their own
     *      BundleEntryProto, keyed by each "slice_name".
     * 
* * repeated .tensorflow.TensorSliceProto slices = 7; */ public java.util.List getSlicesBuilderList() { return getSlicesFieldBuilder().getBuilderList(); } private org.nd4j.shade.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.TensorSliceProto, org.tensorflow.framework.TensorSliceProto.Builder, org.tensorflow.framework.TensorSliceProtoOrBuilder> getSlicesFieldBuilder() { if (slicesBuilder_ == null) { slicesBuilder_ = new org.nd4j.shade.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.TensorSliceProto, org.tensorflow.framework.TensorSliceProto.Builder, org.tensorflow.framework.TensorSliceProtoOrBuilder>( slices_, ((bitField0_ & 0x00000040) == 0x00000040), getParentForChildren(), isClean()); slices_ = null; } return slicesBuilder_; } public final Builder setUnknownFields( final org.nd4j.shade.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } public final Builder mergeUnknownFields( final org.nd4j.shade.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.BundleEntryProto) } // @@protoc_insertion_point(class_scope:tensorflow.BundleEntryProto) private static final org.tensorflow.util.BundleEntryProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.util.BundleEntryProto(); } public static org.tensorflow.util.BundleEntryProto getDefaultInstance() { return DEFAULT_INSTANCE; } private static final org.nd4j.shade.protobuf.Parser PARSER = new org.nd4j.shade.protobuf.AbstractParser() { public BundleEntryProto parsePartialFrom( org.nd4j.shade.protobuf.CodedInputStream input, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws org.nd4j.shade.protobuf.InvalidProtocolBufferException { return new BundleEntryProto(input, extensionRegistry); } }; public static org.nd4j.shade.protobuf.Parser parser() { return PARSER; } @java.lang.Override public org.nd4j.shade.protobuf.Parser getParserForType() { return PARSER; } public org.tensorflow.util.BundleEntryProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy