Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: tensorflow/core/protobuf/tensor_bundle.proto
package org.tensorflow.util;
/**
*
* Describes the metadata related to a checkpointed tensor.
*
*
* Protobuf type {@code tensorflow.BundleEntryProto}
*/
public final class BundleEntryProto extends
org.nd4j.shade.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:tensorflow.BundleEntryProto)
BundleEntryProtoOrBuilder {
private static final long serialVersionUID = 0L;
// Use BundleEntryProto.newBuilder() to construct.
private BundleEntryProto(org.nd4j.shade.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private BundleEntryProto() {
dtype_ = 0;
shardId_ = 0;
offset_ = 0L;
size_ = 0L;
crc32C_ = 0;
slices_ = java.util.Collections.emptyList();
}
@java.lang.Override
public final org.nd4j.shade.protobuf.UnknownFieldSet
getUnknownFields() {
return this.unknownFields;
}
private BundleEntryProto(
org.nd4j.shade.protobuf.CodedInputStream input,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws org.nd4j.shade.protobuf.InvalidProtocolBufferException {
this();
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
int mutable_bitField0_ = 0;
org.nd4j.shade.protobuf.UnknownFieldSet.Builder unknownFields =
org.nd4j.shade.protobuf.UnknownFieldSet.newBuilder();
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
default: {
if (!parseUnknownFieldProto3(
input, unknownFields, extensionRegistry, tag)) {
done = true;
}
break;
}
case 8: {
int rawValue = input.readEnum();
dtype_ = rawValue;
break;
}
case 18: {
org.tensorflow.framework.TensorShapeProto.Builder subBuilder = null;
if (shape_ != null) {
subBuilder = shape_.toBuilder();
}
shape_ = input.readMessage(org.tensorflow.framework.TensorShapeProto.parser(), extensionRegistry);
if (subBuilder != null) {
subBuilder.mergeFrom(shape_);
shape_ = subBuilder.buildPartial();
}
break;
}
case 24: {
shardId_ = input.readInt32();
break;
}
case 32: {
offset_ = input.readInt64();
break;
}
case 40: {
size_ = input.readInt64();
break;
}
case 53: {
crc32C_ = input.readFixed32();
break;
}
case 58: {
if (!((mutable_bitField0_ & 0x00000040) == 0x00000040)) {
slices_ = new java.util.ArrayList();
mutable_bitField0_ |= 0x00000040;
}
slices_.add(
input.readMessage(org.tensorflow.framework.TensorSliceProto.parser(), extensionRegistry));
break;
}
}
}
} catch (org.nd4j.shade.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(this);
} catch (java.io.IOException e) {
throw new org.nd4j.shade.protobuf.InvalidProtocolBufferException(
e).setUnfinishedMessage(this);
} finally {
if (((mutable_bitField0_ & 0x00000040) == 0x00000040)) {
slices_ = java.util.Collections.unmodifiableList(slices_);
}
this.unknownFields = unknownFields.build();
makeExtensionsImmutable();
}
}
public static final org.nd4j.shade.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_descriptor;
}
protected org.nd4j.shade.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.util.BundleEntryProto.class, org.tensorflow.util.BundleEntryProto.Builder.class);
}
private int bitField0_;
public static final int DTYPE_FIELD_NUMBER = 1;
private int dtype_;
/**
*
* The tensor dtype and shape.
*
*
* .tensorflow.DataType dtype = 1;
*/
public int getDtypeValue() {
return dtype_;
}
/**
*
* The tensor dtype and shape.
*
*
* .tensorflow.DataType dtype = 1;
*/
public org.tensorflow.framework.DataType getDtype() {
org.tensorflow.framework.DataType result = org.tensorflow.framework.DataType.valueOf(dtype_);
return result == null ? org.tensorflow.framework.DataType.UNRECOGNIZED : result;
}
public static final int SHAPE_FIELD_NUMBER = 2;
private org.tensorflow.framework.TensorShapeProto shape_;
/**
* .tensorflow.TensorShapeProto shape = 2;
*/
public boolean hasShape() {
return shape_ != null;
}
/**
* .tensorflow.TensorShapeProto shape = 2;
*/
public org.tensorflow.framework.TensorShapeProto getShape() {
return shape_ == null ? org.tensorflow.framework.TensorShapeProto.getDefaultInstance() : shape_;
}
/**
* .tensorflow.TensorShapeProto shape = 2;
*/
public org.tensorflow.framework.TensorShapeProtoOrBuilder getShapeOrBuilder() {
return getShape();
}
public static final int SHARD_ID_FIELD_NUMBER = 3;
private int shardId_;
/**
*
* The binary content of the tensor lies in:
* File "shard_id": bytes [offset, offset + size).
*
*
* int32 shard_id = 3;
*/
public int getShardId() {
return shardId_;
}
public static final int OFFSET_FIELD_NUMBER = 4;
private long offset_;
/**
* int64 offset = 4;
*/
public long getOffset() {
return offset_;
}
public static final int SIZE_FIELD_NUMBER = 5;
private long size_;
/**
* int64 size = 5;
*/
public long getSize() {
return size_;
}
public static final int CRC32C_FIELD_NUMBER = 6;
private int crc32C_;
/**
*
* The CRC32C checksum of the tensor bytes.
*
*
* fixed32 crc32c = 6;
*/
public int getCrc32C() {
return crc32C_;
}
public static final int SLICES_FIELD_NUMBER = 7;
private java.util.List slices_;
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public int getSlicesCount() {
return slices_.size();
}
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public org.tensorflow.framework.TensorSliceProtoOrBuilder getSlicesOrBuilder(
int index) {
return slices_.get(index);
}
private byte memoizedIsInitialized = -1;
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
public void writeTo(org.nd4j.shade.protobuf.CodedOutputStream output)
throws java.io.IOException {
if (dtype_ != org.tensorflow.framework.DataType.DT_INVALID.getNumber()) {
output.writeEnum(1, dtype_);
}
if (shape_ != null) {
output.writeMessage(2, getShape());
}
if (shardId_ != 0) {
output.writeInt32(3, shardId_);
}
if (offset_ != 0L) {
output.writeInt64(4, offset_);
}
if (size_ != 0L) {
output.writeInt64(5, size_);
}
if (crc32C_ != 0) {
output.writeFixed32(6, crc32C_);
}
for (int i = 0; i < slices_.size(); i++) {
output.writeMessage(7, slices_.get(i));
}
unknownFields.writeTo(output);
}
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
if (dtype_ != org.tensorflow.framework.DataType.DT_INVALID.getNumber()) {
size += org.nd4j.shade.protobuf.CodedOutputStream
.computeEnumSize(1, dtype_);
}
if (shape_ != null) {
size += org.nd4j.shade.protobuf.CodedOutputStream
.computeMessageSize(2, getShape());
}
if (shardId_ != 0) {
size += org.nd4j.shade.protobuf.CodedOutputStream
.computeInt32Size(3, shardId_);
}
if (offset_ != 0L) {
size += org.nd4j.shade.protobuf.CodedOutputStream
.computeInt64Size(4, offset_);
}
if (size_ != 0L) {
size += org.nd4j.shade.protobuf.CodedOutputStream
.computeInt64Size(5, size_);
}
if (crc32C_ != 0) {
size += org.nd4j.shade.protobuf.CodedOutputStream
.computeFixed32Size(6, crc32C_);
}
for (int i = 0; i < slices_.size(); i++) {
size += org.nd4j.shade.protobuf.CodedOutputStream
.computeMessageSize(7, slices_.get(i));
}
size += unknownFields.getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof org.tensorflow.util.BundleEntryProto)) {
return super.equals(obj);
}
org.tensorflow.util.BundleEntryProto other = (org.tensorflow.util.BundleEntryProto) obj;
boolean result = true;
result = result && dtype_ == other.dtype_;
result = result && (hasShape() == other.hasShape());
if (hasShape()) {
result = result && getShape()
.equals(other.getShape());
}
result = result && (getShardId()
== other.getShardId());
result = result && (getOffset()
== other.getOffset());
result = result && (getSize()
== other.getSize());
result = result && (getCrc32C()
== other.getCrc32C());
result = result && getSlicesList()
.equals(other.getSlicesList());
result = result && unknownFields.equals(other.unknownFields);
return result;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
hash = (37 * hash) + DTYPE_FIELD_NUMBER;
hash = (53 * hash) + dtype_;
if (hasShape()) {
hash = (37 * hash) + SHAPE_FIELD_NUMBER;
hash = (53 * hash) + getShape().hashCode();
}
hash = (37 * hash) + SHARD_ID_FIELD_NUMBER;
hash = (53 * hash) + getShardId();
hash = (37 * hash) + OFFSET_FIELD_NUMBER;
hash = (53 * hash) + org.nd4j.shade.protobuf.Internal.hashLong(
getOffset());
hash = (37 * hash) + SIZE_FIELD_NUMBER;
hash = (53 * hash) + org.nd4j.shade.protobuf.Internal.hashLong(
getSize());
hash = (37 * hash) + CRC32C_FIELD_NUMBER;
hash = (53 * hash) + getCrc32C();
if (getSlicesCount() > 0) {
hash = (37 * hash) + SLICES_FIELD_NUMBER;
hash = (53 * hash) + getSlicesList().hashCode();
}
hash = (29 * hash) + unknownFields.hashCode();
memoizedHashCode = hash;
return hash;
}
public static org.tensorflow.util.BundleEntryProto parseFrom(
java.nio.ByteBuffer data)
throws org.nd4j.shade.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(
java.nio.ByteBuffer data,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws org.nd4j.shade.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(
org.nd4j.shade.protobuf.ByteString data)
throws org.nd4j.shade.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(
org.nd4j.shade.protobuf.ByteString data,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws org.nd4j.shade.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(byte[] data)
throws org.nd4j.shade.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(
byte[] data,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws org.nd4j.shade.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(java.io.InputStream input)
throws java.io.IOException {
return org.nd4j.shade.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(
java.io.InputStream input,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return org.nd4j.shade.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.util.BundleEntryProto parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return org.nd4j.shade.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static org.tensorflow.util.BundleEntryProto parseDelimitedFrom(
java.io.InputStream input,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return org.nd4j.shade.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(
org.nd4j.shade.protobuf.CodedInputStream input)
throws java.io.IOException {
return org.nd4j.shade.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.util.BundleEntryProto parseFrom(
org.nd4j.shade.protobuf.CodedInputStream input,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return org.nd4j.shade.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(org.tensorflow.util.BundleEntryProto prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
org.nd4j.shade.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
* Describes the metadata related to a checkpointed tensor.
*
*
* Protobuf type {@code tensorflow.BundleEntryProto}
*/
public static final class Builder extends
org.nd4j.shade.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:tensorflow.BundleEntryProto)
org.tensorflow.util.BundleEntryProtoOrBuilder {
public static final org.nd4j.shade.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_descriptor;
}
protected org.nd4j.shade.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.util.BundleEntryProto.class, org.tensorflow.util.BundleEntryProto.Builder.class);
}
// Construct using org.tensorflow.util.BundleEntryProto.newBuilder()
private Builder() {
maybeForceBuilderInitialization();
}
private Builder(
org.nd4j.shade.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
maybeForceBuilderInitialization();
}
private void maybeForceBuilderInitialization() {
if (org.nd4j.shade.protobuf.GeneratedMessageV3
.alwaysUseFieldBuilders) {
getSlicesFieldBuilder();
}
}
public Builder clear() {
super.clear();
dtype_ = 0;
if (shapeBuilder_ == null) {
shape_ = null;
} else {
shape_ = null;
shapeBuilder_ = null;
}
shardId_ = 0;
offset_ = 0L;
size_ = 0L;
crc32C_ = 0;
if (slicesBuilder_ == null) {
slices_ = java.util.Collections.emptyList();
bitField0_ = (bitField0_ & ~0x00000040);
} else {
slicesBuilder_.clear();
}
return this;
}
public org.nd4j.shade.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return org.tensorflow.util.TensorBundleProtos.internal_static_tensorflow_BundleEntryProto_descriptor;
}
public org.tensorflow.util.BundleEntryProto getDefaultInstanceForType() {
return org.tensorflow.util.BundleEntryProto.getDefaultInstance();
}
public org.tensorflow.util.BundleEntryProto build() {
org.tensorflow.util.BundleEntryProto result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
public org.tensorflow.util.BundleEntryProto buildPartial() {
org.tensorflow.util.BundleEntryProto result = new org.tensorflow.util.BundleEntryProto(this);
int from_bitField0_ = bitField0_;
int to_bitField0_ = 0;
result.dtype_ = dtype_;
if (shapeBuilder_ == null) {
result.shape_ = shape_;
} else {
result.shape_ = shapeBuilder_.build();
}
result.shardId_ = shardId_;
result.offset_ = offset_;
result.size_ = size_;
result.crc32C_ = crc32C_;
if (slicesBuilder_ == null) {
if (((bitField0_ & 0x00000040) == 0x00000040)) {
slices_ = java.util.Collections.unmodifiableList(slices_);
bitField0_ = (bitField0_ & ~0x00000040);
}
result.slices_ = slices_;
} else {
result.slices_ = slicesBuilder_.build();
}
result.bitField0_ = to_bitField0_;
onBuilt();
return result;
}
public Builder clone() {
return (Builder) super.clone();
}
public Builder setField(
org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return (Builder) super.setField(field, value);
}
public Builder clearField(
org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field) {
return (Builder) super.clearField(field);
}
public Builder clearOneof(
org.nd4j.shade.protobuf.Descriptors.OneofDescriptor oneof) {
return (Builder) super.clearOneof(oneof);
}
public Builder setRepeatedField(
org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return (Builder) super.setRepeatedField(field, index, value);
}
public Builder addRepeatedField(
org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return (Builder) super.addRepeatedField(field, value);
}
public Builder mergeFrom(org.nd4j.shade.protobuf.Message other) {
if (other instanceof org.tensorflow.util.BundleEntryProto) {
return mergeFrom((org.tensorflow.util.BundleEntryProto)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(org.tensorflow.util.BundleEntryProto other) {
if (other == org.tensorflow.util.BundleEntryProto.getDefaultInstance()) return this;
if (other.dtype_ != 0) {
setDtypeValue(other.getDtypeValue());
}
if (other.hasShape()) {
mergeShape(other.getShape());
}
if (other.getShardId() != 0) {
setShardId(other.getShardId());
}
if (other.getOffset() != 0L) {
setOffset(other.getOffset());
}
if (other.getSize() != 0L) {
setSize(other.getSize());
}
if (other.getCrc32C() != 0) {
setCrc32C(other.getCrc32C());
}
if (slicesBuilder_ == null) {
if (!other.slices_.isEmpty()) {
if (slices_.isEmpty()) {
slices_ = other.slices_;
bitField0_ = (bitField0_ & ~0x00000040);
} else {
ensureSlicesIsMutable();
slices_.addAll(other.slices_);
}
onChanged();
}
} else {
if (!other.slices_.isEmpty()) {
if (slicesBuilder_.isEmpty()) {
slicesBuilder_.dispose();
slicesBuilder_ = null;
slices_ = other.slices_;
bitField0_ = (bitField0_ & ~0x00000040);
slicesBuilder_ =
org.nd4j.shade.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ?
getSlicesFieldBuilder() : null;
} else {
slicesBuilder_.addAllMessages(other.slices_);
}
}
}
this.mergeUnknownFields(other.unknownFields);
onChanged();
return this;
}
public final boolean isInitialized() {
return true;
}
public Builder mergeFrom(
org.nd4j.shade.protobuf.CodedInputStream input,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
org.tensorflow.util.BundleEntryProto parsedMessage = null;
try {
parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry);
} catch (org.nd4j.shade.protobuf.InvalidProtocolBufferException e) {
parsedMessage = (org.tensorflow.util.BundleEntryProto) e.getUnfinishedMessage();
throw e.unwrapIOException();
} finally {
if (parsedMessage != null) {
mergeFrom(parsedMessage);
}
}
return this;
}
private int bitField0_;
private int dtype_ = 0;
/**
*
* The tensor dtype and shape.
*
*
* .tensorflow.DataType dtype = 1;
*/
public int getDtypeValue() {
return dtype_;
}
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public int getSlicesCount() {
if (slicesBuilder_ == null) {
return slices_.size();
} else {
return slicesBuilder_.getCount();
}
}
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public Builder setSlices(
int index, org.tensorflow.framework.TensorSliceProto value) {
if (slicesBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureSlicesIsMutable();
slices_.set(index, value);
onChanged();
} else {
slicesBuilder_.setMessage(index, value);
}
return this;
}
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public Builder addSlices(org.tensorflow.framework.TensorSliceProto value) {
if (slicesBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureSlicesIsMutable();
slices_.add(value);
onChanged();
} else {
slicesBuilder_.addMessage(value);
}
return this;
}
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public Builder addSlices(
int index, org.tensorflow.framework.TensorSliceProto value) {
if (slicesBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureSlicesIsMutable();
slices_.add(index, value);
onChanged();
} else {
slicesBuilder_.addMessage(index, value);
}
return this;
}
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public org.tensorflow.framework.TensorSliceProto.Builder getSlicesBuilder(
int index) {
return getSlicesFieldBuilder().getBuilder(index);
}
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public org.tensorflow.framework.TensorSliceProtoOrBuilder getSlicesOrBuilder(
int index) {
if (slicesBuilder_ == null) {
return slices_.get(index); } else {
return slicesBuilder_.getMessageOrBuilder(index);
}
}
/**
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
* Iff present, this entry represents a partitioned tensor. The previous
* fields are interpreted as follows:
* "dtype", "shape": describe the full tensor.
* "shard_id", "offset", "size", "crc32c": all IGNORED.
* These information for each slice can be looked up in their own
* BundleEntryProto, keyed by each "slice_name".
*
*
* repeated .tensorflow.TensorSliceProto slices = 7;
*/
public java.util.List
getSlicesBuilderList() {
return getSlicesFieldBuilder().getBuilderList();
}
private org.nd4j.shade.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.framework.TensorSliceProto, org.tensorflow.framework.TensorSliceProto.Builder, org.tensorflow.framework.TensorSliceProtoOrBuilder>
getSlicesFieldBuilder() {
if (slicesBuilder_ == null) {
slicesBuilder_ = new org.nd4j.shade.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.framework.TensorSliceProto, org.tensorflow.framework.TensorSliceProto.Builder, org.tensorflow.framework.TensorSliceProtoOrBuilder>(
slices_,
((bitField0_ & 0x00000040) == 0x00000040),
getParentForChildren(),
isClean());
slices_ = null;
}
return slicesBuilder_;
}
public final Builder setUnknownFields(
final org.nd4j.shade.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFieldsProto3(unknownFields);
}
public final Builder mergeUnknownFields(
final org.nd4j.shade.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:tensorflow.BundleEntryProto)
}
// @@protoc_insertion_point(class_scope:tensorflow.BundleEntryProto)
private static final org.tensorflow.util.BundleEntryProto DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new org.tensorflow.util.BundleEntryProto();
}
public static org.tensorflow.util.BundleEntryProto getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final org.nd4j.shade.protobuf.Parser
PARSER = new org.nd4j.shade.protobuf.AbstractParser() {
public BundleEntryProto parsePartialFrom(
org.nd4j.shade.protobuf.CodedInputStream input,
org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
throws org.nd4j.shade.protobuf.InvalidProtocolBufferException {
return new BundleEntryProto(input, extensionRegistry);
}
};
public static org.nd4j.shade.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public org.nd4j.shade.protobuf.Parser getParserForType() {
return PARSER;
}
public org.tensorflow.util.BundleEntryProto getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}