org.opensearch.search.aggregations.metrics.StatsAggregator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of opensearch Show documentation
Show all versions of opensearch Show documentation
OpenSearch subproject :server
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*/
package org.opensearch.search.aggregations.metrics;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.search.ScoreMode;
import org.opensearch.common.lease.Releasables;
import org.opensearch.common.util.BigArrays;
import org.opensearch.common.util.DoubleArray;
import org.opensearch.common.util.LongArray;
import org.opensearch.index.fielddata.SortedNumericDoubleValues;
import org.opensearch.search.DocValueFormat;
import org.opensearch.search.aggregations.Aggregator;
import org.opensearch.search.aggregations.InternalAggregation;
import org.opensearch.search.aggregations.LeafBucketCollector;
import org.opensearch.search.aggregations.LeafBucketCollectorBase;
import org.opensearch.search.aggregations.support.ValuesSource;
import org.opensearch.search.aggregations.support.ValuesSourceConfig;
import org.opensearch.search.internal.SearchContext;
import java.io.IOException;
import java.util.Map;
/**
* Aggregate all docs into their basic descriptive statistics
*
* @opensearch.internal
*/
class StatsAggregator extends NumericMetricsAggregator.MultiValue {
final ValuesSource.Numeric valuesSource;
final DocValueFormat format;
LongArray counts;
DoubleArray sums;
DoubleArray compensations;
DoubleArray mins;
DoubleArray maxes;
StatsAggregator(
String name,
ValuesSourceConfig valuesSourceConfig,
SearchContext context,
Aggregator parent,
Map metadata
) throws IOException {
super(name, context, parent, metadata);
// TODO: stop using nulls here
this.valuesSource = valuesSourceConfig.hasValues() ? (ValuesSource.Numeric) valuesSourceConfig.getValuesSource() : null;
if (valuesSource != null) {
final BigArrays bigArrays = context.bigArrays();
counts = bigArrays.newLongArray(1, true);
sums = bigArrays.newDoubleArray(1, true);
compensations = bigArrays.newDoubleArray(1, true);
mins = bigArrays.newDoubleArray(1, false);
mins.fill(0, mins.size(), Double.POSITIVE_INFINITY);
maxes = bigArrays.newDoubleArray(1, false);
maxes.fill(0, maxes.size(), Double.NEGATIVE_INFINITY);
}
this.format = valuesSourceConfig.format();
}
@Override
public ScoreMode scoreMode() {
return valuesSource != null && valuesSource.needsScores() ? ScoreMode.COMPLETE : ScoreMode.COMPLETE_NO_SCORES;
}
@Override
public LeafBucketCollector getLeafCollector(LeafReaderContext ctx, final LeafBucketCollector sub) throws IOException {
if (valuesSource == null) {
return LeafBucketCollector.NO_OP_COLLECTOR;
}
final BigArrays bigArrays = context.bigArrays();
final SortedNumericDoubleValues values = valuesSource.doubleValues(ctx);
final CompensatedSum kahanSummation = new CompensatedSum(0, 0);
return new LeafBucketCollectorBase(sub, values) {
@Override
public void collect(int doc, long bucket) throws IOException {
if (bucket >= counts.size()) {
final long from = counts.size();
final long overSize = BigArrays.overSize(bucket + 1);
counts = bigArrays.resize(counts, overSize);
sums = bigArrays.resize(sums, overSize);
compensations = bigArrays.resize(compensations, overSize);
mins = bigArrays.resize(mins, overSize);
maxes = bigArrays.resize(maxes, overSize);
mins.fill(from, overSize, Double.POSITIVE_INFINITY);
maxes.fill(from, overSize, Double.NEGATIVE_INFINITY);
}
if (values.advanceExact(doc)) {
final int valuesCount = values.docValueCount();
counts.increment(bucket, valuesCount);
double min = mins.get(bucket);
double max = maxes.get(bucket);
// Compute the sum of double values with Kahan summation algorithm which is more
// accurate than naive summation.
double sum = sums.get(bucket);
double compensation = compensations.get(bucket);
kahanSummation.reset(sum, compensation);
for (int i = 0; i < valuesCount; i++) {
double value = values.nextValue();
kahanSummation.add(value);
min = Math.min(min, value);
max = Math.max(max, value);
}
sums.set(bucket, kahanSummation.value());
compensations.set(bucket, kahanSummation.delta());
mins.set(bucket, min);
maxes.set(bucket, max);
}
}
};
}
@Override
public boolean hasMetric(String name) {
try {
InternalStats.Metrics.resolve(name);
return true;
} catch (IllegalArgumentException iae) {
return false;
}
}
@Override
public double metric(String name, long owningBucketOrd) {
if (valuesSource == null || owningBucketOrd >= counts.size()) {
switch (InternalStats.Metrics.resolve(name)) {
case count:
return 0;
case sum:
return 0;
case min:
return Double.POSITIVE_INFINITY;
case max:
return Double.NEGATIVE_INFINITY;
case avg:
return Double.NaN;
default:
throw new IllegalArgumentException("Unknown value [" + name + "] in common stats aggregation");
}
}
switch (InternalStats.Metrics.resolve(name)) {
case count:
return counts.get(owningBucketOrd);
case sum:
return sums.get(owningBucketOrd);
case min:
return mins.get(owningBucketOrd);
case max:
return maxes.get(owningBucketOrd);
case avg:
return sums.get(owningBucketOrd) / counts.get(owningBucketOrd);
default:
throw new IllegalArgumentException("Unknown value [" + name + "] in common stats aggregation");
}
}
@Override
public InternalAggregation buildAggregation(long bucket) {
if (valuesSource == null || bucket >= sums.size()) {
return buildEmptyAggregation();
}
return new InternalStats(name, counts.get(bucket), sums.get(bucket), mins.get(bucket), maxes.get(bucket), format, metadata());
}
@Override
public InternalAggregation buildEmptyAggregation() {
return new InternalStats(name, 0, 0, Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, format, metadata());
}
@Override
public void doClose() {
Releasables.close(counts, maxes, mins, sums, compensations);
}
}