org.opensearch.search.aggregations.pipeline.HoltLinearModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of opensearch Show documentation
Show all versions of opensearch Show documentation
OpenSearch subproject :server
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*/
package org.opensearch.search.aggregations.pipeline;
import org.opensearch.common.Nullable;
import org.opensearch.core.common.io.stream.StreamInput;
import org.opensearch.core.common.io.stream.StreamOutput;
import org.opensearch.core.xcontent.XContentBuilder;
import java.io.IOException;
import java.text.ParseException;
import java.util.Collection;
import java.util.Map;
import java.util.Objects;
/**
* Calculate a doubly exponential weighted moving average
*
* @opensearch.internal
*/
public class HoltLinearModel extends MovAvgModel {
public static final String NAME = "holt";
private static final double DEFAULT_ALPHA = 0.3;
private static final double DEFAULT_BETA = 0.1;
/**
* Controls smoothing of data. Also known as "level" value.
* Alpha = 1 retains no memory of past values
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
* mean of the series).
*/
private final double alpha;
/**
* Controls smoothing of trend.
* Beta = 1 retains no memory of past values
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
* mean of the series).
*/
private final double beta;
public HoltLinearModel() {
this(DEFAULT_ALPHA, DEFAULT_BETA);
}
public HoltLinearModel(double alpha, double beta) {
this.alpha = alpha;
this.beta = beta;
}
/**
* Read from a stream.
*/
public HoltLinearModel(StreamInput in) throws IOException {
alpha = in.readDouble();
beta = in.readDouble();
}
@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeDouble(alpha);
out.writeDouble(beta);
}
@Override
public String getWriteableName() {
return NAME;
}
@Override
public boolean canBeMinimized() {
return true;
}
@Override
public MovAvgModel neighboringModel() {
double newValue = Math.random();
switch ((int) (Math.random() * 2)) {
case 0:
return new HoltLinearModel(newValue, this.beta);
case 1:
return new HoltLinearModel(this.alpha, newValue);
default:
assert (false) : "Random value fell outside of range [0-1]";
return new HoltLinearModel(newValue, this.beta); // This should never technically happen...
}
}
@Override
public MovAvgModel clone() {
return new HoltLinearModel(this.alpha, this.beta);
}
/**
* Predicts the next `n` values in the series, using the smoothing model to generate new values.
* Unlike the other moving averages, Holt-Linear has forecasting/prediction built into the algorithm.
* Prediction is more than simply adding the next prediction to the window and repeating. Holt-Linear
* will extrapolate into the future by applying the trend information to the smoothed data.
*
* @param values Collection of numerics to movingAvg, usually windowed
* @param numPredictions Number of newly generated predictions to return
* @return Returns an array of doubles, since most smoothing methods operate on floating points
*/
@Override
protected double[] doPredict(Collection values, int numPredictions) {
return next(values, numPredictions);
}
@Override
public double next(Collection values) {
return next(values, 1)[0];
}
/**
* Calculate a Holt-Linear (doubly exponential weighted) moving average
*
* @param values Collection of values to calculate avg for
* @param numForecasts number of forecasts into the future to return
*
* @return Returns a Double containing the moving avg for the window
*/
public double[] next(Collection values, int numForecasts) {
if (values.size() == 0) {
return emptyPredictions(numForecasts);
}
return MovingFunctions.holtForecast(values.stream().mapToDouble(Double::doubleValue).toArray(), alpha, beta, numForecasts);
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.field(MovAvgPipelineAggregationBuilder.MODEL.getPreferredName(), NAME);
builder.startObject(MovAvgPipelineAggregationBuilder.SETTINGS.getPreferredName());
builder.field("alpha", alpha);
builder.field("beta", beta);
builder.endObject();
return builder;
}
public static final AbstractModelParser PARSER = new AbstractModelParser() {
@Override
public MovAvgModel parse(@Nullable Map settings, String pipelineName, int windowSize) throws ParseException {
double alpha = parseDoubleParam(settings, "alpha", DEFAULT_ALPHA);
double beta = parseDoubleParam(settings, "beta", DEFAULT_BETA);
checkUnrecognizedParams(settings);
return new HoltLinearModel(alpha, beta);
}
};
@Override
public int hashCode() {
return Objects.hash(alpha, beta);
}
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
HoltLinearModel other = (HoltLinearModel) obj;
return Objects.equals(alpha, other.alpha) && Objects.equals(beta, other.beta);
}
/**
* Builder for the holt linear model
*
* @opensearch.internal
*/
public static class HoltLinearModelBuilder implements MovAvgModelBuilder {
private double alpha = DEFAULT_ALPHA;
private double beta = DEFAULT_BETA;
/**
* Alpha controls the smoothing of the data. Alpha = 1 retains no memory of past values
* (e.g. a random walk), while alpha = 0 retains infinite memory of past values (e.g.
* the series mean). Useful values are somewhere in between. Defaults to 0.5.
*
* @param alpha A double between 0-1 inclusive, controls data smoothing
*
* @return The builder to continue chaining
*/
public HoltLinearModelBuilder alpha(double alpha) {
this.alpha = alpha;
return this;
}
/**
* Equivalent to alpha
, but controls the smoothing of the trend instead of the data
*
* @param beta a double between 0-1 inclusive, controls trend smoothing
*
* @return The builder to continue chaining
*/
public HoltLinearModelBuilder beta(double beta) {
this.beta = beta;
return this;
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.field(MovAvgPipelineAggregationBuilder.MODEL.getPreferredName(), NAME);
builder.startObject(MovAvgPipelineAggregationBuilder.SETTINGS.getPreferredName());
builder.field("alpha", alpha);
builder.field("beta", beta);
builder.endObject();
return builder;
}
@Override
public MovAvgModel build() {
return new HoltLinearModel(alpha, beta);
}
}
}