org.opensearch.common.geo.GeoPolygonDecomposer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of opensearch Show documentation
Show all versions of opensearch Show documentation
OpenSearch subproject :server
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*/
package org.opensearch.common.geo;
import org.opensearch.common.collect.Tuple;
import org.opensearch.geometry.LinearRing;
import org.opensearch.geometry.MultiPolygon;
import org.opensearch.geometry.Point;
import org.opensearch.geometry.Polygon;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.atomic.AtomicBoolean;
import org.locationtech.spatial4j.exception.InvalidShapeException;
import static org.opensearch.common.geo.GeoUtils.normalizeLat;
import static org.opensearch.common.geo.GeoUtils.normalizeLon;
import static org.apache.lucene.geo.GeoUtils.orient;
/**
* Splits polygons by datelines.
*
* @opensearch.internal
*/
public class GeoPolygonDecomposer {
private static final double DATELINE = 180;
private static final Comparator INTERSECTION_ORDER = Comparator.comparingDouble(o -> o.intersect.getY());
private GeoPolygonDecomposer() {
// no instances
}
public static void decomposeMultiPolygon(MultiPolygon multiPolygon, boolean orientation, List collector) {
for (Polygon polygon : multiPolygon) {
decomposePolygon(polygon, orientation, collector);
}
}
/**
* Splits the specified polygon by datelines and adds them to the supplied polygon array
*/
public static void decomposePolygon(Polygon polygon, boolean orientation, List collector) {
if (polygon.isEmpty()) {
return;
}
int numEdges = polygon.getPolygon().length() - 1; // Last point is repeated
for (int i = 0; i < polygon.getNumberOfHoles(); i++) {
numEdges += polygon.getHole(i).length() - 1;
validateHole(polygon.getPolygon(), polygon.getHole(i));
}
Edge[] edges = new Edge[numEdges];
Edge[] holeComponents = new Edge[polygon.getNumberOfHoles()];
final AtomicBoolean translated = new AtomicBoolean(false);
int offset = createEdges(0, orientation, polygon.getPolygon(), null, edges, 0, translated);
for (int i = 0; i < polygon.getNumberOfHoles(); i++) {
int length = createEdges(i + 1, orientation, polygon.getPolygon(), polygon.getHole(i), edges, offset, translated);
holeComponents[i] = edges[offset];
offset += length;
}
int numHoles = holeComponents.length;
numHoles = merge(edges, 0, intersections(+DATELINE, edges), holeComponents, numHoles);
numHoles = merge(edges, 0, intersections(-DATELINE, edges), holeComponents, numHoles);
compose(edges, holeComponents, numHoles, collector);
}
private static void validateHole(LinearRing shell, LinearRing hole) {
Set exterior = new HashSet<>();
Set interior = new HashSet<>();
for (int i = 0; i < shell.length(); i++) {
exterior.add(new Point(shell.getX(i), shell.getY(i)));
}
for (int i = 0; i < hole.length(); i++) {
interior.add(new Point(hole.getX(i), hole.getY(i)));
}
exterior.retainAll(interior);
if (exterior.size() >= 2) {
throw new IllegalArgumentException("Invalid polygon, interior cannot share more than one point with the exterior");
}
}
private static Point position(Point p1, Point p2, double position) {
if (position == 0) {
return p1;
} else if (position == 1) {
return p2;
} else {
final double x = p1.getX() + position * (p2.getX() - p1.getX());
final double y = p1.getY() + position * (p2.getY() - p1.getY());
return new Point(x, y);
}
}
private static int createEdges(
int component,
boolean orientation,
LinearRing shell,
LinearRing hole,
Edge[] edges,
int offset,
final AtomicBoolean translated
) {
// inner rings (holes) have an opposite direction than the outer rings
// XOR will invert the orientation for outer ring cases (Truth Table:, T/T = F, T/F = T, F/T = T, F/F = F)
boolean direction = (component == 0 ^ orientation);
// set the points array accordingly (shell or hole)
Point[] points = (hole != null) ? points(hole) : points(shell);
ring(component, direction, orientation == false, points, 0, edges, offset, points.length - 1, translated);
return points.length - 1;
}
private static Point[] points(LinearRing linearRing) {
Point[] points = new Point[linearRing.length()];
for (int i = 0; i < linearRing.length(); i++) {
points[i] = new Point(linearRing.getX(i), linearRing.getY(i));
}
return points;
}
/**
* Create a connected list of a list of coordinates
*
* @param points array of point
* @param offset index of the first point
* @param length number of points
* @return Array of edges
*/
private static Edge[] ring(
int component,
boolean direction,
boolean handedness,
Point[] points,
int offset,
Edge[] edges,
int toffset,
int length,
final AtomicBoolean translated
) {
boolean orientation = getOrientation(points, offset, length);
// OGC requires shell as ccw (Right-Handedness) and holes as cw (Left-Handedness)
// since GeoJSON doesn't specify (and doesn't need to) GEO core will assume OGC standards
// thus if orientation is computed as cw, the logic will translate points across dateline
// and convert to a right handed system
// compute the bounding box and calculate range
double[] range = range(points, offset, length);
final double rng = range[1] - range[0];
// translate the points if the following is true
// 1. shell orientation is cw and range is greater than a hemisphere (180 degrees) but not spanning 2 hemispheres
// (translation would result in a collapsed poly)
// 2. the shell of the candidate hole has been translated (to preserve the coordinate system)
boolean incorrectOrientation = component == 0 && handedness != orientation;
if ((incorrectOrientation && (rng > DATELINE && rng != 2 * DATELINE)) || (translated.get() && component != 0)) {
translate(points);
// flip the translation bit if the shell is being translated
if (component == 0) {
translated.set(true);
}
// correct the orientation post translation (ccw for shell, cw for holes)
if (component == 0 || (component != 0 && handedness == orientation)) {
orientation = !orientation;
}
}
return concat(component, direction ^ orientation, points, offset, edges, toffset, length);
}
/**
* Transforms coordinates in the eastern hemisphere (-180:0) to a (180:360) range
*/
private static void translate(Point[] points) {
for (int i = 0; i < points.length; i++) {
if (points[i].getX() < 0) {
points[i] = new Point(points[i].getX() + 2 * DATELINE, points[i].getY());
}
}
}
/**
* @return whether the points are clockwise (true) or anticlockwise (false)
*/
private static boolean getOrientation(Point[] points, int offset, int length) {
// calculate the direction of the points: find the southernmost point
// and check its neighbors orientation.
final int top = top(points, offset, length);
final int prev = (top + length - 1) % length;
final int next = (top + 1) % length;
final int determinantSign = orient(
points[offset + prev].getX(),
points[offset + prev].getY(),
points[offset + top].getX(),
points[offset + top].getY(),
points[offset + next].getX(),
points[offset + next].getY()
);
if (determinantSign == 0) {
// Points are collinear, but `top` is not in the middle if so, so the edges either side of `top` are intersecting.
throw new InvalidShapeException(
"Cannot determine orientation: edges adjacent to ("
+ points[offset + top].getX()
+ ","
+ points[offset + top].getY()
+ ") coincide"
);
}
return determinantSign < 0;
}
/**
* @return the (offset) index of the point that is furthest west amongst
* those points that are the furthest south in the set.
*/
private static int top(Point[] points, int offset, int length) {
int top = 0; // we start at 1 here since top points to 0
for (int i = 1; i < length; i++) {
if (points[offset + i].getY() < points[offset + top].getY()) {
top = i;
} else if (points[offset + i].getY() == points[offset + top].getY()) {
if (points[offset + i].getX() < points[offset + top].getX()) {
top = i;
}
}
}
return top;
}
private static double[] range(Point[] points, int offset, int length) {
double minX = points[0].getX();
double maxX = minX;
double minY = points[0].getY();
double maxY = minY;
// compute the bounding coordinates (@todo: cleanup brute force)
for (int i = 1; i < length; ++i) {
Point point = points[offset + i];
if (point.getX() < minX) {
minX = point.getX();
}
if (point.getX() > maxX) {
maxX = point.getX();
}
if (point.getY() < minY) {
minY = point.getY();
}
if (point.getY() > maxY) {
maxY = point.getY();
}
}
return new double[] { minX, maxX, minY, maxY };
}
private static int merge(Edge[] intersections, int offset, int length, Edge[] holes, int numHoles) {
// Intersections appear pairwise. On the first edge the inner of
// of the polygon is entered. On the second edge the outer face
// is entered. Other kinds of intersections are discard by the
// intersection function
for (int i = 0; i < length; i += 2) {
Edge e1 = intersections[offset + i + 0];
Edge e2 = intersections[offset + i + 1];
// If two segments are connected maybe a hole must be deleted
// Since Edges of components appear pairwise we need to check
// the second edge only (the first edge is either polygon or
// already handled)
if (e2.component > 0) {
// TODO: Check if we could save the set null step
numHoles--;
holes[e2.component - 1] = holes[numHoles];
holes[numHoles] = null;
}
// only connect edges if intersections are pairwise
// 1. per the comment above, the edge array is sorted by y-value of the intersection
// with the dateline. Two edges have the same y intercept when they cross the
// dateline thus they appear sequentially (pairwise) in the edge array. Two edges
// do not have the same y intercept when we're forming a multi-poly from a poly
// that wraps the dateline (but there are 2 ordered intercepts).
// The connect method creates a new edge for these paired edges in the linked list.
// For boundary conditions (e.g., intersect but not crossing) there is no sibling edge
// to connect. Thus the first logic check enforces the pairwise rule
// 2. the second logic check ensures the two candidate edges aren't already connected by an
// existing edge along the dateline - this is necessary due to a logic change in
// ShapeBuilder.intersection that computes dateline edges as valid intersect points
// in support of OGC standards
if (e1.intersect != Edge.MAX_COORDINATE
&& e2.intersect != Edge.MAX_COORDINATE
&& !(e1.next.next.coordinate.equals(e2.coordinate)
&& Math.abs(e1.next.coordinate.getX()) == DATELINE
&& Math.abs(e2.coordinate.getX()) == DATELINE)) {
connect(e1, e2);
}
}
return numHoles;
}
private static void connect(Edge in, Edge out) {
assert in != null && out != null;
assert in != out;
// Connecting two Edges by inserting the point at
// dateline intersection and connect these by adding
// two edges between this points. One per direction
if (in.intersect != in.next.coordinate) {
// NOTE: the order of the object creation is crucial here! Don't change it!
// first edge has no point on dateline
Edge e1 = new Edge(in.intersect, in.next);
if (out.intersect != out.next.coordinate) {
// second edge has no point on dateline
Edge e2 = new Edge(out.intersect, out.next);
in.next = new Edge(in.intersect, e2, in.intersect);
} else {
// second edge intersects with dateline
in.next = new Edge(in.intersect, out.next, in.intersect);
}
out.next = new Edge(out.intersect, e1, out.intersect);
} else if (in.next != out && in.coordinate != out.intersect) {
// first edge intersects with dateline
Edge e2 = new Edge(out.intersect, in.next, out.intersect);
if (out.intersect != out.next.coordinate) {
// second edge has no point on dateline
Edge e1 = new Edge(out.intersect, out.next);
in.next = new Edge(in.intersect, e1, in.intersect);
} else {
// second edge intersects with dateline
in.next = new Edge(in.intersect, out.next, in.intersect);
}
out.next = e2;
}
}
/**
* Concatenate a set of points to a polygon
*
* @param component component id of the polygon
* @param direction direction of the ring
* @param points list of points to concatenate
* @param pointOffset index of the first point
* @param edges Array of edges to write the result to
* @param edgeOffset index of the first edge in the result
* @param length number of points to use
* @return the edges creates
*/
private static Edge[] concat(
int component,
boolean direction,
Point[] points,
final int pointOffset,
Edge[] edges,
final int edgeOffset,
int length
) {
assert edges.length >= length + edgeOffset;
assert points.length >= length + pointOffset;
edges[edgeOffset] = new Edge(new Point(points[pointOffset].getX(), points[pointOffset].getY()), null);
for (int i = 1; i < length; i++) {
Point nextPoint = new Point(points[pointOffset + i].getX(), points[pointOffset + i].getY());
if (direction) {
edges[edgeOffset + i] = new Edge(nextPoint, edges[edgeOffset + i - 1]);
edges[edgeOffset + i].component = component;
} else if (!edges[edgeOffset + i - 1].coordinate.equals(nextPoint)) {
edges[edgeOffset + i - 1].next = edges[edgeOffset + i] = new Edge(nextPoint, null);
edges[edgeOffset + i - 1].component = component;
} else {
throw new InvalidShapeException("Provided shape has duplicate consecutive coordinates at: (" + nextPoint + ")");
}
}
if (direction) {
edges[edgeOffset].setNext(edges[edgeOffset + length - 1]);
edges[edgeOffset].component = component;
} else {
edges[edgeOffset + length - 1].setNext(edges[edgeOffset]);
edges[edgeOffset + length - 1].component = component;
}
return edges;
}
/**
* Calculate all intersections of line segments and a vertical line. The
* Array of edges will be ordered asc by the y-coordinate of the
* intersections of edges.
*
* @param dateline x-coordinate of the dateline
* @param edges set of edges that may intersect with the dateline
* @return number of intersecting edges
*/
private static int intersections(double dateline, Edge[] edges) {
int numIntersections = 0;
assert !Double.isNaN(dateline);
for (int i = 0; i < edges.length; i++) {
Point p1 = edges[i].coordinate;
Point p2 = edges[i].next.coordinate;
assert !Double.isNaN(p2.getX()) && !Double.isNaN(p1.getX());
edges[i].intersect = Edge.MAX_COORDINATE;
double position = intersection(p1.getX(), p2.getX(), dateline);
if (!Double.isNaN(position)) {
edges[i].intersection(position);
numIntersections++;
}
}
Arrays.sort(edges, INTERSECTION_ORDER);
return numIntersections;
}
private static Edge[] edges(Edge[] edges, int numHoles, List> components) {
ArrayList mainEdges = new ArrayList<>(edges.length);
for (int i = 0; i < edges.length; i++) {
if (edges[i].component >= 0) {
double[] partitionPoint = new double[3];
int length = component(edges[i], -(components.size() + numHoles + 1), mainEdges, partitionPoint);
List component = new ArrayList<>();
component.add(coordinates(edges[i], new Point[length + 1], partitionPoint));
components.add(component);
}
}
return mainEdges.toArray(new Edge[mainEdges.size()]);
}
private static void compose(Edge[] edges, Edge[] holes, int numHoles, List collector) {
final List> components = new ArrayList<>();
assign(holes, holes(holes, numHoles), numHoles, edges(edges, numHoles, components), components);
buildPoints(components, collector);
}
private static void assign(Edge[] holes, Point[][] points, int numHoles, Edge[] edges, List> components) {
// Assign Hole to related components
// To find the new component the hole belongs to all intersections of the
// polygon edges with a vertical line are calculated. This vertical line
// is an arbitrary point of the hole. The polygon edge next to this point
// is part of the polygon the hole belongs to.
for (int i = 0; i < numHoles; i++) {
// To do the assignment we assume (and later, elsewhere, check) that each hole is within
// a single component, and the components do not overlap. Based on this assumption, it's
// enough to find a component that contains some vertex of the hole, and
// holes[i].coordinate is such a vertex, so we use that one.
// First, we sort all the edges according to their order of intersection with the line
// of longitude through holes[i].coordinate, in order from south to north. Edges that do
// not intersect this line are sorted to the end of the array and of no further interest
// here.
final Edge current = new Edge(holes[i].coordinate, holes[i].next);
current.intersect = current.coordinate;
final int intersections = intersections(current.coordinate.getX(), edges);
if (intersections == 0) {
// There were no edges that intersect the line of longitude through
// holes[i].coordinate, so there's no way this hole is within the polygon.
throw new InvalidShapeException("Invalid shape: Hole is not within polygon");
}
// Next we do a binary search to find the position of holes[i].coordinate in the array.
// The binary search returns the index of an exact match, or (-insertionPoint - 1) if
// the vertex lies between the intersections of edges[insertionPoint] and
// edges[insertionPoint+1]. The latter case is vastly more common.
final int pos;
boolean sharedVertex = false;
if (((pos = Arrays.binarySearch(edges, 0, intersections, current, INTERSECTION_ORDER)) >= 0)
&& !(sharedVertex = (edges[pos].intersect.equals(current.coordinate)))) {
// The binary search returned an exact match, but we checked again using compareTo()
// and it didn't match after all.
// TODO Can this actually happen? Needs a test to exercise it, or else needs to be removed.
throw new InvalidShapeException("Invalid shape: Hole is not within polygon");
}
final int index;
if (sharedVertex) {
// holes[i].coordinate lies exactly on an edge.
index = 0; // TODO Should this be pos instead of 0? This assigns exact matches to the southernmost component.
} else if (pos == -1) {
// holes[i].coordinate is strictly south of all intersections. Assign it to the
// southernmost component, and allow later validation to spot that it is not
// entirely within the chosen component.
index = 0;
} else {
// holes[i].coordinate is strictly north of at least one intersection. Assign it to
// the component immediately to its south.
index = -(pos + 2);
}
final int component = -edges[index].component - numHoles - 1;
components.get(component).add(points[i]);
}
}
/**
* This method sets the component id of all edges in a ring to a given id and shifts the
* coordinates of this component according to the dateline
*
* @param edge An arbitrary edge of the component
* @param id id to apply to the component
* @param edges a list of edges to which all edges of the component will be added (could be null
)
* @return number of edges that belong to this component
*/
private static int component(final Edge edge, final int id, final ArrayList edges, double[] partitionPoint) {
// find a coordinate that is not part of the dateline
Edge any = edge;
while (any.coordinate.getX() == +DATELINE || any.coordinate.getX() == -DATELINE) {
if ((any = any.next) == edge) {
break;
}
}
double shiftOffset = any.coordinate.getX() > DATELINE ? DATELINE : (any.coordinate.getX() < -DATELINE ? -DATELINE : 0);
// run along the border of the component, collect the
// edges, shift them according to the dateline and
// update the component id
int length = 0, connectedComponents = 0;
// if there are two connected components, splitIndex keeps track of where to split the edge array
// start at 1 since the source coordinate is shared
int splitIndex = 1;
Edge current = edge;
Edge prev = edge;
// bookkeep the source and sink of each visited coordinate
HashMap> visitedEdge = new HashMap<>();
do {
current.coordinate = shift(current.coordinate, shiftOffset);
current.component = id;
if (edges != null) {
// found a closed loop - we have two connected components so we need to slice into two distinct components
if (visitedEdge.containsKey(current.coordinate)) {
partitionPoint[0] = current.coordinate.getX();
partitionPoint[1] = current.coordinate.getY();
partitionPoint[2] = current.coordinate.getZ();
if (connectedComponents > 0 && current.next != edge) {
throw new InvalidShapeException("Shape contains more than one shared point");
}
// a negative id flags the edge as visited for the edges(...) method.
// since we're splitting connected components, we want the edges method to visit
// the newly separated component
final int visitID = -id;
Edge firstAppearance = visitedEdge.get(current.coordinate).v2();
// correct the graph pointers by correcting the 'next' pointer for both the
// first appearance and this appearance of the edge
Edge temp = firstAppearance.next;
firstAppearance.next = current.next;
current.next = temp;
current.component = visitID;
// backtrack until we get back to this coordinate, setting the visit id to
// a non-visited value (anything positive)
do {
prev.component = visitID;
prev = visitedEdge.get(prev.coordinate).v1();
++splitIndex;
} while (!current.coordinate.equals(prev.coordinate));
++connectedComponents;
} else {
visitedEdge.put(current.coordinate, new Tuple(prev, current));
}
edges.add(current);
prev = current;
}
length++;
} while (connectedComponents == 0 && (current = current.next) != edge);
return (splitIndex != 1) ? length - splitIndex : length;
}
/**
* Compute all coordinates of a component
*
* @param component an arbitrary edge of the component
* @param coordinates Array of coordinates to write the result to
* @return the coordinates parameter
*/
private static Point[] coordinates(Edge component, Point[] coordinates, double[] partitionPoint) {
for (int i = 0; i < coordinates.length; i++) {
coordinates[i] = (component = component.next).coordinate;
}
// First and last coordinates must be equal
if (coordinates[0].equals(coordinates[coordinates.length - 1]) == false) {
if (Double.isNaN(partitionPoint[2])) {
throw new InvalidShapeException("Self-intersection at or near point [" + partitionPoint[0] + "," + partitionPoint[1] + "]");
} else {
throw new InvalidShapeException(
"Self-intersection at or near point [" + partitionPoint[0] + "," + partitionPoint[1] + "," + partitionPoint[2] + "]"
);
}
}
return coordinates;
}
private static void buildPoints(List> components, List collector) {
for (List component : components) {
collector.add(buildPolygon(component));
}
}
private static Polygon buildPolygon(List polygon) {
List holes;
Point[] shell = polygon.get(0);
if (polygon.size() > 1) {
holes = new ArrayList<>(polygon.size() - 1);
for (int i = 1; i < polygon.size(); ++i) {
Point[] coords = polygon.get(i);
// We do not have holes on the dateline as they get eliminated
// when breaking the polygon around it.
double[] x = new double[coords.length];
double[] y = new double[coords.length];
for (int c = 0; c < coords.length; ++c) {
x[c] = normalizeLon(coords[c].getX());
y[c] = normalizeLat(coords[c].getY());
}
holes.add(new LinearRing(x, y));
}
} else {
holes = Collections.emptyList();
}
double[] x = new double[shell.length];
double[] y = new double[shell.length];
for (int i = 0; i < shell.length; ++i) {
// Lucene Tessellator treats different +180 and -180 and we should keep the sign.
// normalizeLon method excludes -180.
x[i] = normalizeLonMinus180Inclusive(shell[i].getX());
y[i] = normalizeLat(shell[i].getY());
}
return new Polygon(new LinearRing(x, y), holes);
}
private static Point[][] holes(Edge[] holes, int numHoles) {
if (numHoles == 0) {
return new Point[0][];
}
final Point[][] points = new Point[numHoles][];
for (int i = 0; i < numHoles; i++) {
double[] partitionPoint = new double[3];
int length = component(holes[i], -(i + 1), null, partitionPoint); // mark as visited by inverting the sign
points[i] = coordinates(holes[i], new Point[length + 1], partitionPoint);
}
return points;
}
/**
* Normalizes longitude while accepting -180 degrees as a valid value
*/
private static double normalizeLonMinus180Inclusive(double lon) {
return Math.abs(lon) > 180 ? normalizeLon(lon) : lon;
}
private static Point shift(Point coordinate, double dateline) {
if (dateline == 0) {
return coordinate;
} else {
return new Point(-2 * dateline + coordinate.getX(), coordinate.getY());
}
}
/**
* Calculate the intersection of a line segment and a vertical dateline.
*
* @param p1x longitude of the start-point of the line segment
* @param p2x longitude of the end-point of the line segment
* @param dateline x-coordinate of the vertical dateline
* @return position of the intersection in the open range (0..1] if the line
* segment intersects with the line segment. Otherwise this method
* returns {@link Double#NaN}
*/
private static double intersection(double p1x, double p2x, double dateline) {
if (p1x == p2x && p1x != dateline) {
return Double.NaN;
} else if (p1x == p2x && p1x == dateline) {
return 1.0;
} else {
final double t = (dateline - p1x) / (p2x - p1x);
if (t > 1 || t <= 0) {
return Double.NaN;
} else {
return t;
}
}
}
/**
* This helper class implements a linked list for {@link Point}. It contains
* fields for a dateline intersection and component id
*/
private static final class Edge {
Point coordinate; // coordinate of the start point
Edge next; // next segment
Point intersect; // potential intersection with dateline
int component = -1; // id of the component this edge belongs to
static final Point MAX_COORDINATE = new Point(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
Edge(Point coordinate, Edge next, Point intersection) {
this.coordinate = coordinate;
// use setter to catch duplicate point cases
this.setNext(next);
this.intersect = intersection;
if (next != null) {
this.component = next.component;
}
}
Edge(Point coordinate, Edge next) {
this(coordinate, next, Edge.MAX_COORDINATE);
}
void setNext(Edge next) {
// don't bother setting next if its null
if (next != null) {
// self-loop throws an invalid shape
if (this.coordinate.equals(next.coordinate)) {
throw new InvalidShapeException("Provided shape has duplicate consecutive coordinates at: " + this.coordinate);
}
this.next = next;
}
}
/**
* Set the intersection of this line segment to the given position
*
* @param position position of the intersection [0..1]
* @return the {@link Point} of the intersection
*/
Point intersection(double position) {
return intersect = position(coordinate, next.coordinate, position);
}
@Override
public String toString() {
return "Edge[Component=" + component + "; start=" + coordinate + " " + "; intersection=" + intersect + "]";
}
}
}