org.osgi.util.position.Position Maven / Gradle / Ivy
/*
* Copyright (c) OSGi Alliance (2002, 2009). All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.osgi.util.position;
import org.osgi.util.measurement.Measurement;
import org.osgi.util.measurement.Unit;
/**
* Position represents a geographic location, based on the WGS84 System (World
* Geodetic System 1984).
*
* The org.osgi.util.measurement.Measurement
class is used to
* represent the values that make up a position.
*
*
* A given position object may lack any of it's components, i.e. the altitude
* may not be known. Such missing values will be represented by null.
*
* Position does not override the implementation of either equals() or
* hashCode() because it is not clear how missing values should be handled. It
* is up to the user of a position to determine how best to compare two position
* objects. A Position
object is immutable.
*
* @Immutable
* @version $Revision: 6860 $
*/
public class Position {
private final Measurement altitude;
private final Measurement longitude;
private final Measurement latitude;
private final Measurement speed;
private final Measurement track;
/**
* Constructs a Position
object with the given values.
*
* @param lat a Measurement
object specifying the latitude in
* radians, or null
* @param lon a Measurement
object specifying the longitude in
* radians, or null
* @param alt a Measurement
object specifying the altitude in
* meters, or null
* @param speed a Measurement
object specifying the speed in
* meters per second, or null
* @param track a Measurement
object specifying the track in
* radians, or null
*/
public Position(Measurement lat, Measurement lon, Measurement alt,
Measurement speed, Measurement track) {
if (lat != null) {
if (!Unit.rad.equals(lat.getUnit())) {
throw new IllegalArgumentException("Invalid Latitude");
}
}
if (lon != null) {
if (!Unit.rad.equals(lon.getUnit())) {
throw new IllegalArgumentException("Invalid Longitude");
}
}
if (alt != null) {
if (!Unit.m.equals(alt.getUnit())) {
throw new IllegalArgumentException("Invalid Altitude");
}
}
if (speed != null) {
if (!Unit.m_s.equals(speed.getUnit())) {
throw new IllegalArgumentException("Invalid Speed");
}
}
if (track != null) {
if (!Unit.rad.equals(track.getUnit())) {
throw new IllegalArgumentException("Invalid Track");
}
}
/*
* Verify the longitude and latitude parameters so they fit the normal
* coordinate system. A latitude is between -90 (south) and +90 (north).
* A longitude is between -180 (Western hemisphere) and +180 (eastern
* hemisphere). This method first normalizes the latitude and longitude
* between +/- 180. If the |latitude| > 90, then the longitude is added
* 180 and the latitude is normalized to fit +/-90. (Example are with
* degrees though radians are used)
No normalization takes place
* when either lon or lat is null.
*/
normalizeLatLon: {
if (lat == null || lon == null) {
break normalizeLatLon;
}
double dlat = lat.getValue();
double dlon = lon.getValue();
if (dlon >= -LON_RANGE && dlon < LON_RANGE && dlat >= -LAT_RANGE
&& dlat <= LAT_RANGE) {
break normalizeLatLon;
}
dlon = normalize(dlon, LON_RANGE);
dlat = normalize(dlat, LAT_RANGE * 2.0D); // First over 180 degree
// Check if we have to move to other side of the earth
if (dlat > LAT_RANGE || dlat < -LAT_RANGE) {
dlon = normalize(dlon - LON_RANGE, LON_RANGE);
dlat = normalize((LAT_RANGE * 2.0D) - dlat, LAT_RANGE);
}
lon = new Measurement(dlon, lon.getError(), lon.getUnit(), lon
.getTime());
lat = new Measurement(dlat, lat.getError(), lat.getUnit(), lat
.getTime());
}
/*
* Normalize track to be a value such that: 0 <= value < +2PI. This
* corresponds to 0 deg to +360 deg. 0 is North, 0.5PI is East, PI is
* South, 1.5PI is West
*/
normalizeTrack: {
if (track == null) {
break normalizeTrack;
}
double dtrack = track.getValue();
if ((0.0D <= dtrack) && (dtrack < TRACK_RANGE)) {
break normalizeTrack; /* value is already normalized */
}
dtrack %= TRACK_RANGE;
if (dtrack < 0.0D) {
dtrack += TRACK_RANGE;
}
track = new Measurement(dtrack, track.getError(), track.getUnit(),
track.getTime());
}
this.latitude = lat;
this.longitude = lon;
this.altitude = alt;
this.speed = speed;
this.track = track;
}
/**
* Returns the altitude of this position in meters.
*
* @return a Measurement
object in Unit.m
representing
* the altitude in meters above the ellipsoid null
if the
* altitude is not known.
*/
public Measurement getAltitude() {
return altitude;
}
/**
* Returns the longitude of this position in radians.
*
* @return a Measurement
object in Unit.rad
* representing the longitude, or null
if the longitude
* is not known.
*/
public Measurement getLongitude() {
return longitude;
}
/**
* Returns the latitude of this position in radians.
*
* @return a Measurement
object in Unit.rad
* representing the latitude, or null
if the latitude is
* not known..
*/
public Measurement getLatitude() {
return latitude;
}
/**
* Returns the ground speed of this position in meters per second.
*
* @return a Measurement
object in Unit.m_s
* representing the speed, or null
if the speed is not
* known..
*/
public Measurement getSpeed() {
return speed;
}
/**
* Returns the track of this position in radians as a compass heading. The
* track is the extrapolation of previous previously measured positions to a
* future position.
*
* @return a Measurement
object in Unit.rad
* representing the track, or null
if the track is not
* known..
*/
public Measurement getTrack() {
return track;
}
private static final double LON_RANGE = Math.PI;
private static final double LAT_RANGE = Math.PI / 2.0D;
/**
* This function normalizes the a value according to a range. This is not
* simple modulo (as I thought when I started), but requires some special
* handling. For positive numbers we subtract 2*range from the number so
* that end up between -/+ range. For negative numbers we add this value.
* For example, if the value is 270 and the range is +/- 180. Then sign=1 so
* the (int) factor becomes 270+180/360 = 1. This means that 270-360=-90 is
* the result. (degrees are only used to make it easier to understand, this
* function is agnostic for radians/degrees). The result will be in
* [range,range> The algorithm is not very fast, but it handling the
* [> ranges made it very messy using integer arithmetic, and this is
* very readable. Note that it is highly unlikely that this method is called
* in normal situations. Normally input values to position are already
* normalized because they come from a GPS. And this is much more readable.
*
* @param value The value that needs adjusting
* @param range -range = < value < range
*/
private static double normalize(double value, double range) {
double twiceRange = 2.0D * range;
while (value >= range) {
value -= twiceRange;
}
while (value < -range) {
value += twiceRange;
}
return value;
}
private static final double TRACK_RANGE = Math.PI * 2.0D;
}