org.python.core.PyComplex Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython-standalone Show documentation
Show all versions of jython-standalone Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
// Copyright (c) Corporation for National Research Initiatives
package org.python.core;
import org.python.expose.ExposedGet;
import org.python.expose.ExposedMethod;
import org.python.expose.ExposedNew;
import org.python.expose.ExposedType;
import org.python.expose.MethodType;
/**
* A builtin python complex number
*/
@ExposedType(name = "complex")
public class PyComplex extends PyObject {
public static final PyType TYPE = PyType.fromClass(PyComplex.class);
@ExposedGet
public double real, imag;
static PyComplex J = new PyComplex(0, 1.);
@ExposedNew
public static PyObject complex_new(PyNewWrapper new_, boolean init, PyType subtype,
PyObject[] args, String[] keywords) {
ArgParser ap = new ArgParser("complex", args, keywords, "real", "imag");
PyObject real = ap.getPyObject(0, Py.Zero);
PyObject imag = ap.getPyObject(1, null);
// Special-case for single argument that is already complex
if (real.getType() == TYPE && new_.for_type == subtype && imag == null) {
return real;
}
if (real instanceof PyString) {
if (imag != null) {
throw Py.TypeError("complex() can't take second arg if first is a string");
}
return real.__complex__();
}
if (imag != null && imag instanceof PyString) {
throw Py.TypeError("complex() second arg can't be a string");
}
try {
real = real.__complex__();
} catch (PyException pye) {
if (!pye.match(Py.AttributeError)) {
// __complex__ not supported
throw pye;
}
// otherwise try other means
}
PyComplex complexReal;
PyComplex complexImag;
PyFloat toFloat = null;
if (real instanceof PyComplex) {
complexReal = (PyComplex)real;
} else {
try {
toFloat = real.__float__();
} catch (PyException pye) {
if (pye.match(Py.AttributeError)) {
// __float__ not supported
throw Py.TypeError("complex() argument must be a string or a number");
}
throw pye;
}
complexReal = new PyComplex(toFloat.getValue());
}
if (imag == null) {
complexImag = new PyComplex(0.0);
} else if (imag instanceof PyComplex) {
complexImag = (PyComplex)imag;
} else {
toFloat = null;
try {
toFloat = imag.__float__();
} catch (PyException pye) {
if (pye.match(Py.AttributeError)) {
// __float__ not supported
throw Py.TypeError("complex() argument must be a string or a number");
}
throw pye;
}
complexImag = new PyComplex(toFloat.getValue());
}
complexReal.real -= complexImag.imag;
complexReal.imag += complexImag.real;
if (new_.for_type != subtype) {
complexReal = new PyComplexDerived(subtype, complexReal.real, complexReal.imag);
}
return complexReal;
}
public PyComplex(PyType subtype, double r, double i) {
super(subtype);
real = r;
imag = i;
}
public PyComplex(double r, double i) {
this(TYPE, r, i);
}
public PyComplex(double r) {
this(r, 0.0);
}
public final PyFloat getReal() {
return Py.newFloat(real);
}
public final PyFloat getImag() {
return Py.newFloat(imag);
}
public static String toString(double value) {
if (value == Math.floor(value) &&
value <= Long.MAX_VALUE && value >= Long.MIN_VALUE) {
return Long.toString((long)value);
} else {
return Double.toString(value);
}
}
public String toString() {
return complex_toString();
}
@ExposedMethod(names = {"__repr__", "__str__"}, doc = BuiltinDocs.complex___str___doc)
final String complex_toString() {
if (real == 0.) {
return toString(imag)+"j";
} else {
if (imag >= 0) {
return "("+toString(real)+"+"+toString(imag)+"j)";
} else {
return "("+toString(real)+"-"+toString(-imag)+"j)";
}
}
}
public int hashCode() {
return complex___hash__();
}
@ExposedMethod(doc = BuiltinDocs.complex___hash___doc)
final int complex___hash__() {
if (imag == 0) {
return new PyFloat(real).hashCode();
} else {
long v = Double.doubleToLongBits(real) ^
Double.doubleToLongBits(imag);
return (int)v ^ (int)(v >> 32);
}
}
public boolean __nonzero__() {
return complex___nonzero__();
}
@ExposedMethod(doc = BuiltinDocs.complex___nonzero___doc)
final boolean complex___nonzero__() {
return real != 0 || imag != 0;
}
/*public Object __tojava__(Class c) {
return super.__tojava__(c);
}*/
public int __cmp__(PyObject other) {
if (!canCoerce(other))
return -2;
PyComplex c = coerce(other);
double oreal = c.real;
double oimag = c.imag;
if (real == oreal && imag == oimag)
return 0;
if (real != oreal) {
return real < oreal ? -1 : 1;
} else {
return imag < oimag ? -1 : 1;
}
}
/*
* @see org.python.core.PyObject#__eq__(org.python.core.PyObject)
*/
public PyObject __eq__(PyObject other) {
return complex___eq__(other);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___eq___doc)
final PyObject complex___eq__(PyObject other) {
if (!canCoerce(other))
return null;
PyComplex c = coerce(other);
return Py.newBoolean(real == c.real && imag == c.imag);
}
/*
* @see org.python.core.PyObject#__ne__(org.python.core.PyObject)
*/
public PyObject __ne__(PyObject other) {
return complex___ne__(other);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___ne___doc)
final PyObject complex___ne__(PyObject other) {
if (!canCoerce(other))
return null;
PyComplex c = coerce(other);
return Py.newBoolean(real != c.real || imag != c.imag);
}
private PyObject unsupported_comparison(PyObject other) {
if (!canCoerce(other))
return null;
throw Py.TypeError("cannot compare complex numbers using <, <=, >, >=");
}
public PyObject __ge__(PyObject other) {
return complex___ge__(other);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___ge___doc)
final PyObject complex___ge__(PyObject other) {
return unsupported_comparison(other);
}
public PyObject __gt__(PyObject other) {
return complex___gt__(other);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___gt___doc)
final PyObject complex___gt__(PyObject other) {
return unsupported_comparison(other);
}
public PyObject __le__(PyObject other) {
return complex___le__(other);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___le___doc)
final PyObject complex___le__(PyObject other) {
return unsupported_comparison(other);
}
public PyObject __lt__(PyObject other) {
return complex___lt__(other);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___lt___doc)
final PyObject complex___lt__(PyObject other) {
return unsupported_comparison(other);
}
public Object __coerce_ex__(PyObject other) {
return complex___coerce_ex__(other);
}
@ExposedMethod(doc = BuiltinDocs.complex___coerce___doc)
final PyObject complex___coerce__(PyObject other) {
return adaptToCoerceTuple(complex___coerce_ex__(other));
}
/**
* Coercion logic for complex. Implemented as a final method to avoid
* invocation of virtual methods from the exposed coerce.
*/
final PyObject complex___coerce_ex__(PyObject other) {
if (other instanceof PyComplex)
return other;
if (other instanceof PyFloat)
return new PyComplex(((PyFloat)other).getValue(), 0);
if (other instanceof PyInteger)
return new PyComplex(((PyInteger)other).getValue(), 0);
if (other instanceof PyLong)
return new PyComplex(((PyLong)other).doubleValue(), 0);
return Py.None;
}
private final boolean canCoerce(PyObject other) {
return other instanceof PyComplex ||
other instanceof PyFloat ||
other instanceof PyInteger ||
other instanceof PyLong;
}
private final PyComplex coerce(PyObject other) {
if (other instanceof PyComplex)
return (PyComplex) other;
if (other instanceof PyFloat)
return new PyComplex(((PyFloat)other).getValue(), 0);
if (other instanceof PyInteger)
return new PyComplex(((PyInteger)other).getValue(), 0);
if (other instanceof PyLong)
return new PyComplex(((PyLong)other).doubleValue(), 0);
throw Py.TypeError("xxx");
}
public PyObject __add__(PyObject right) {
return complex___add__(right);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___add___doc)
final PyObject complex___add__(PyObject right) {
if (!canCoerce(right))
return null;
PyComplex c = coerce(right);
return new PyComplex(real+c.real, imag+c.imag);
}
public PyObject __radd__(PyObject left) {
return complex___radd__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___radd___doc)
final PyObject complex___radd__(PyObject left) {
return __add__(left);
}
private final static PyObject _sub(PyComplex o1, PyComplex o2) {
return new PyComplex(o1.real-o2.real, o1.imag-o2.imag);
}
public PyObject __sub__(PyObject right) {
return complex___sub__(right);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___sub___doc)
final PyObject complex___sub__(PyObject right) {
if (!canCoerce(right))
return null;
return _sub(this, coerce(right));
}
public PyObject __rsub__(PyObject left) {
return complex___rsub__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___rsub___doc)
final PyObject complex___rsub__(PyObject left) {
if (!canCoerce(left))
return null;
return _sub(coerce(left), this);
}
private final static PyObject _mul(PyComplex o1, PyComplex o2) {
return new PyComplex(o1.real*o2.real-o1.imag*o2.imag,
o1.real*o2.imag+o1.imag*o2.real);
}
public PyObject __mul__(PyObject right) {
return complex___mul__(right);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___mul___doc)
final PyObject complex___mul__(PyObject right) {
if (!canCoerce(right))
return null;
return _mul(this, coerce(right));
}
public PyObject __rmul__(PyObject left) {
return complex___rmul__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___rmul___doc)
final PyObject complex___rmul__(PyObject left) {
if (!canCoerce(left))
return null;
return _mul(coerce(left), this);
}
private final static PyObject _div(PyComplex a, PyComplex b) {
double abs_breal = b.real < 0 ? -b.real : b.real;
double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
if (abs_breal >= abs_bimag) {
// Divide tops and bottom by b.real
if (abs_breal == 0.0) {
throw Py.ZeroDivisionError("complex division");
}
double ratio = b.imag / b.real;
double denom = b.real + b.imag * ratio;
return new PyComplex((a.real + a.imag * ratio) / denom,
(a.imag - a.real * ratio) / denom);
} else {
/* divide tops and bottom by b.imag */
double ratio = b.real / b.imag;
double denom = b.real * ratio + b.imag;
return new PyComplex((a.real * ratio + a.imag) / denom,
(a.imag * ratio - a.real) / denom);
}
}
public PyObject __div__(PyObject right) {
return complex___div__(right);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___div___doc)
final PyObject complex___div__(PyObject right) {
if (!canCoerce(right))
return null;
if (Options.divisionWarning >= 2)
Py.warning(Py.DeprecationWarning, "classic complex division");
return _div(this, coerce(right));
}
public PyObject __rdiv__(PyObject left) {
return complex___rdiv__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___rdiv___doc)
final PyObject complex___rdiv__(PyObject left) {
if (!canCoerce(left))
return null;
if (Options.divisionWarning >= 2)
Py.warning(Py.DeprecationWarning, "classic complex division");
return _div(coerce(left), this);
}
public PyObject __floordiv__(PyObject right) {
return complex___floordiv__(right);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___floordiv___doc)
final PyObject complex___floordiv__(PyObject right) {
if (!canCoerce(right))
return null;
return _divmod(this, coerce(right)).__finditem__(0);
}
public PyObject __rfloordiv__(PyObject left) {
return complex___rfloordiv__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___rfloordiv___doc)
final PyObject complex___rfloordiv__(PyObject left) {
if (!canCoerce(left))
return null;
return _divmod(coerce(left), this).__finditem__(0);
}
public PyObject __truediv__(PyObject right) {
return complex___truediv__(right);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___truediv___doc)
final PyObject complex___truediv__(PyObject right) {
if (!canCoerce(right))
return null;
return _div(this, coerce(right));
}
public PyObject __rtruediv__(PyObject left) {
return complex___rtruediv__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___rtruediv___doc)
final PyObject complex___rtruediv__(PyObject left) {
if (!canCoerce(left))
return null;
return _div(coerce(left), this);
}
public PyObject __mod__(PyObject right) {
return complex___mod__(right);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___mod___doc)
final PyObject complex___mod__(PyObject right) {
if (!canCoerce(right))
return null;
return _mod(this, coerce(right));
}
public PyObject __rmod__(PyObject left) {
return complex___rmod__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___rmod___doc)
final PyObject complex___rmod__(PyObject left) {
if (!canCoerce(left))
return null;
return _mod(coerce(left), this);
}
private static PyObject _mod(PyComplex value, PyComplex right) {
Py.warning(Py.DeprecationWarning, "complex divmod(), // and % are deprecated");
PyComplex z = (PyComplex) _div(value, right);
z.real = Math.floor(z.real);
z.imag = 0.0;
return value.__sub__(z.__mul__(right));
}
public PyObject __divmod__(PyObject right) {
return complex___divmod__(right);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___divmod___doc)
final PyObject complex___divmod__(PyObject right) {
if (!canCoerce(right))
return null;
return _divmod(this, coerce(right));
}
public PyObject __rdivmod__(PyObject left) {
return complex___rdivmod__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___rdivmod___doc)
final PyObject complex___rdivmod__(PyObject left) {
if (!canCoerce(left))
return null;
return _divmod(coerce(left), this);
}
private static PyObject _divmod(PyComplex value, PyComplex right) {
Py.warning(Py.DeprecationWarning, "complex divmod(), // and % are deprecated");
PyComplex z = (PyComplex) _div(value, right);
z.real = Math.floor(z.real);
z.imag = 0.0;
return new PyTuple(z, value.__sub__(z.__mul__(right)));
}
private static PyObject ipow(PyComplex value, int iexp) {
int pow = iexp;
if (pow < 0) pow = -pow;
double xr = value.real;
double xi = value.imag;
double zr = 1;
double zi = 0;
double tmp;
while (pow > 0) {
if ((pow & 0x1) != 0) {
tmp = zr*xr - zi*xi;
zi = zi*xr + zr*xi;
zr = tmp;
}
pow >>= 1;
if (pow == 0)
break;
tmp = xr*xr - xi*xi;
xi = xr*xi*2;
xr = tmp;
}
PyComplex ret = new PyComplex(zr, zi);
if (iexp < 0)
return new PyComplex(1,0).__div__(ret);
return ret;
}
public PyObject __pow__(PyObject right, PyObject modulo) {
return complex___pow__(right, modulo);
}
@ExposedMethod(type = MethodType.BINARY, defaults = "null", doc = BuiltinDocs.complex___pow___doc)
final PyObject complex___pow__(PyObject right, PyObject modulo) {
if (modulo != null) {
throw Py.ValueError("complex modulo");
}
if (!canCoerce(right))
return null;
return _pow(this, coerce(right));
}
public PyObject __rpow__(PyObject left) {
return complex___rpow__(left);
}
@ExposedMethod(type = MethodType.BINARY, doc = BuiltinDocs.complex___rpow___doc)
final PyObject complex___rpow__(PyObject left) {
if (!canCoerce(left))
return null;
return _pow(coerce(left), this);
}
public static PyObject _pow(PyComplex value, PyComplex right) {
double xr = value.real;
double xi = value.imag;
double yr = right.real;
double yi = right.imag;
if (yr == 0 && yi == 0) {
return new PyComplex(1, 0);
}
if (xr == 0 && xi == 0) {
if (yi != 0 || yr < 0) {
throw Py.ZeroDivisionError("0.0 to a negative or complex power");
}
}
// Check for integral powers
int iexp = (int)yr;
if (yi == 0 && yr == iexp && iexp >= -128 && iexp <= 128) {
return ipow(value, iexp);
}
double abs = Math.hypot(xr, xi);
double len = Math.pow(abs, yr);
double at = Math.atan2(xi, xr);
double phase = at*yr;
if (yi != 0) {
len /= Math.exp(at*yi);
phase += yi*Math.log(abs);
}
return new PyComplex(len*Math.cos(phase), len*Math.sin(phase));
}
public PyObject __neg__() {
return complex___neg__();
}
@ExposedMethod(doc = BuiltinDocs.complex___neg___doc)
final PyObject complex___neg__() {
return new PyComplex(-real, -imag);
}
public PyObject __pos__() {
return complex___pos__();
}
@ExposedMethod(doc = BuiltinDocs.complex___pos___doc)
final PyObject complex___pos__() {
if (getType() == TYPE) {
return this;
}
return new PyComplex(real, imag);
}
public PyObject __invert__() {
throw Py.TypeError("bad operand type for unary ~");
}
public PyObject __abs__() {
return complex___abs__();
}
@ExposedMethod(doc = BuiltinDocs.complex___abs___doc)
final PyObject complex___abs__() {
return new PyFloat(Math.hypot(real, imag));
}
public PyObject __int__() {
return complex___int__();
}
@ExposedMethod(doc = BuiltinDocs.complex___int___doc)
final PyInteger complex___int__() {
throw Py.TypeError(
"can't convert complex to int; use e.g. int(abs(z))");
}
public PyObject __long__() {
return complex___long__();
}
@ExposedMethod(doc = BuiltinDocs.complex___long___doc)
final PyObject complex___long__() {
throw Py.TypeError(
"can't convert complex to long; use e.g. long(abs(z))");
}
public PyFloat __float__() {
return complex___float__();
}
@ExposedMethod(doc = BuiltinDocs.complex___float___doc)
final PyFloat complex___float__() {
throw Py.TypeError("can't convert complex to float; use e.g. abs(z)");
}
public PyComplex __complex__() {
return new PyComplex(real, imag);
}
public PyComplex conjugate() {
return complex_conjugate();
}
@ExposedMethod(doc = BuiltinDocs.complex_conjugate_doc)
final PyComplex complex_conjugate() {
return new PyComplex(real, -imag);
}
@ExposedMethod(doc = BuiltinDocs.complex___getnewargs___doc)
final PyTuple complex___getnewargs__() {
return new PyTuple(new PyComplex(real, imag));
}
public PyTuple __getnewargs__() {
return complex___getnewargs__();
}
public boolean isMappingType() { return false; }
public boolean isSequenceType() { return false; }
}