templates.spark.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython-standalone Show documentation
Show all versions of jython-standalone Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
# Copyright (c) 1998-2000 John Aycock
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
__version__ = 'SPARK-0.6.1'
import re
import sys
import string
def _namelist(instance):
namelist, namedict, classlist = [], {}, [instance.__class__]
for c in classlist:
for b in c.__bases__:
classlist.append(b)
for name in dir(c):
if not namedict.has_key(name):
namelist.append(name)
namedict[name] = 1
return namelist
class GenericScanner:
def __init__(self):
pattern = self.reflect()
self.re = re.compile(pattern, re.VERBOSE)
self.index2func = {}
for name, number in self.re.groupindex.items():
self.index2func[number-1] = getattr(self, 't_' + name)
def makeRE(self, name):
doc = getattr(self, name).__doc__
rv = '(?P<%s>%s)' % (name[2:], doc)
return rv
def reflect(self):
rv = []
for name in _namelist(self):
if name[:2] == 't_' and name != 't_default':
rv.append(self.makeRE(name))
rv.append(self.makeRE('t_default'))
return string.join(rv, '|')
def error(self, s, pos):
print "Lexical error at position %s" % pos
raise SystemExit
def tokenize(self, s):
pos = 0
n = len(s)
while pos < n:
m = self.re.match(s, pos)
if m is None:
self.error(s, pos)
groups = m.groups()
for i in range(len(groups)):
if groups[i] and self.index2func.has_key(i):
self.index2func[i](groups[i])
pos = m.end()
def t_default(self, s):
r'( . | \n )+'
pass
class GenericParser:
def __init__(self, start):
self.rules = {}
self.rule2func = {}
self.rule2name = {}
self.collectRules()
self.startRule = self.augment(start)
self.ruleschanged = 1
_START = 'START'
_EOF = 'EOF'
#
# A hook for GenericASTBuilder and GenericASTMatcher.
#
def preprocess(self, rule, func): return rule, func
def addRule(self, doc, func):
rules = string.split(doc)
index = []
for i in range(len(rules)):
if rules[i] == '::=':
index.append(i-1)
index.append(len(rules))
for i in range(len(index)-1):
lhs = rules[index[i]]
rhs = rules[index[i]+2:index[i+1]]
rule = (lhs, tuple(rhs))
rule, fn = self.preprocess(rule, func)
if self.rules.has_key(lhs):
self.rules[lhs].append(rule)
else:
self.rules[lhs] = [ rule ]
self.rule2func[rule] = fn
self.rule2name[rule] = func.__name__[2:]
self.ruleschanged = 1
def collectRules(self):
for name in _namelist(self):
if name[:2] == 'p_':
func = getattr(self, name)
doc = func.__doc__
self.addRule(doc, func)
def augment(self, start):
#
# Tempting though it is, this isn't made into a call
# to self.addRule() because the start rule shouldn't
# be subject to preprocessing.
#
startRule = (self._START, ( start, self._EOF ))
self.rule2func[startRule] = lambda args: args[0]
self.rules[self._START] = [ startRule ]
self.rule2name[startRule] = ''
return startRule
def makeFIRST(self):
union = {}
self.first = {}
for rulelist in self.rules.values():
for lhs, rhs in rulelist:
if not self.first.has_key(lhs):
self.first[lhs] = {}
if len(rhs) == 0:
self.first[lhs][None] = 1
continue
sym = rhs[0]
if not self.rules.has_key(sym):
self.first[lhs][sym] = 1
else:
union[(sym, lhs)] = 1
changes = 1
while changes:
changes = 0
for src, dest in union.keys():
destlen = len(self.first[dest])
self.first[dest].update(self.first[src])
if len(self.first[dest]) != destlen:
changes = 1
#
# An Earley parser, as per J. Earley, "An Efficient Context-Free
# Parsing Algorithm", CACM 13(2), pp. 94-102. Also J. C. Earley,
# "An Efficient Context-Free Parsing Algorithm", Ph.D. thesis,
# Carnegie-Mellon University, August 1968, p. 27.
#
def typestring(self, token):
return None
def error(self, token):
print "Syntax error at or near `%s' token" % token
raise SystemExit
def parse(self, tokens):
tree = {}
tokens.append(self._EOF)
states = { 0: [ (self.startRule, 0, 0) ] }
if self.ruleschanged:
self.makeFIRST()
for i in xrange(len(tokens)):
states[i+1] = []
if states[i] == []:
break
self.buildState(tokens[i], states, i, tree)
#_dump(tokens, states)
if i < len(tokens)-1 or states[i+1] != [(self.startRule, 2, 0)]:
del tokens[-1]
self.error(tokens[i-1])
rv = self.buildTree(tokens, tree, ((self.startRule, 2, 0), i+1))
del tokens[-1]
return rv
def buildState(self, token, states, i, tree):
needsCompletion = {}
state = states[i]
predicted = {}
for item in state:
rule, pos, parent = item
lhs, rhs = rule
#
# A -> a . (completer)
#
if pos == len(rhs):
if len(rhs) == 0:
needsCompletion[lhs] = (item, i)
for pitem in states[parent]:
if pitem is item:
break
prule, ppos, pparent = pitem
plhs, prhs = prule
if prhs[ppos:ppos+1] == (lhs,):
new = (prule,
ppos+1,
pparent)
if new not in state:
state.append(new)
tree[(new, i)] = [(item, i)]
else:
tree[(new, i)].append((item, i))
continue
nextSym = rhs[pos]
#
# A -> a . B (predictor)
#
if self.rules.has_key(nextSym):
#
# Work on completer step some more; for rules
# with empty RHS, the "parent state" is the
# current state we're adding Earley items to,
# so the Earley items the completer step needs
# may not all be present when it runs.
#
if needsCompletion.has_key(nextSym):
new = (rule, pos+1, parent)
olditem_i = needsCompletion[nextSym]
if new not in state:
state.append(new)
tree[(new, i)] = [olditem_i]
else:
tree[(new, i)].append(olditem_i)
#
# Has this been predicted already?
#
if predicted.has_key(nextSym):
continue
predicted[nextSym] = 1
ttype = token is not self._EOF and \
self.typestring(token) or \
None
if ttype is not None:
#
# Even smarter predictor, when the
# token's type is known. The code is
# grungy, but runs pretty fast. Three
# cases are looked for: rules with
# empty RHS; first symbol on RHS is a
# terminal; first symbol on RHS is a
# nonterminal (and isn't nullable).
#
for prule in self.rules[nextSym]:
new = (prule, 0, i)
prhs = prule[1]
if len(prhs) == 0:
state.append(new)
continue
prhs0 = prhs[0]
if not self.rules.has_key(prhs0):
if prhs0 != ttype:
continue
else:
state.append(new)
continue
first = self.first[prhs0]
if not first.has_key(None) and \
not first.has_key(ttype):
continue
state.append(new)
continue
for prule in self.rules[nextSym]:
#
# Smarter predictor, as per Grune &
# Jacobs' _Parsing Techniques_. Not
# as good as FIRST sets though.
#
prhs = prule[1]
if len(prhs) > 0 and \
not self.rules.has_key(prhs[0]) and \
token != prhs[0]:
continue
state.append((prule, 0, i))
#
# A -> a . c (scanner)
#
elif token == nextSym:
#assert new not in states[i+1]
states[i+1].append((rule, pos+1, parent))
def buildTree(self, tokens, tree, root):
stack = []
self.buildTree_r(stack, tokens, -1, tree, root)
return stack[0]
def buildTree_r(self, stack, tokens, tokpos, tree, root):
(rule, pos, parent), state = root
while pos > 0:
want = ((rule, pos, parent), state)
if not tree.has_key(want):
#
# Since pos > 0, it didn't come from closure,
# and if it isn't in tree[], then there must
# be a terminal symbol to the left of the dot.
# (It must be from a "scanner" step.)
#
pos = pos - 1
state = state - 1
stack.insert(0, tokens[tokpos])
tokpos = tokpos - 1
else:
#
# There's a NT to the left of the dot.
# Follow the tree pointer recursively (>1
# tree pointers from it indicates ambiguity).
# Since the item must have come about from a
# "completer" step, the state where the item
# came from must be the parent state of the
# item the tree pointer points to.
#
children = tree[want]
if len(children) > 1:
child = self.ambiguity(children)
else:
child = children[0]
tokpos = self.buildTree_r(stack,
tokens, tokpos,
tree, child)
pos = pos - 1
(crule, cpos, cparent), cstate = child
state = cparent
lhs, rhs = rule
result = self.rule2func[rule](stack[:len(rhs)])
stack[:len(rhs)] = [result]
return tokpos
def ambiguity(self, children):
#
# XXX - problem here and in collectRules() if the same
# rule appears in >1 method. But in that case the
# user probably gets what they deserve :-) Also
# undefined results if rules causing the ambiguity
# appear in the same method.
#
sortlist = []
name2index = {}
for i in range(len(children)):
((rule, pos, parent), index) = children[i]
lhs, rhs = rule
name = self.rule2name[rule]
sortlist.append((len(rhs), name))
name2index[name] = i
sortlist.sort()
list = map(lambda (a,b): b, sortlist)
return children[name2index[self.resolve(list)]]
def resolve(self, list):
#
# Resolve ambiguity in favor of the shortest RHS.
# Since we walk the tree from the top down, this
# should effectively resolve in favor of a "shift".
#
return list[0]
#
# GenericASTBuilder automagically constructs a concrete/abstract syntax tree
# for a given input. The extra argument is a class (not an instance!)
# which supports the "__setslice__" and "__len__" methods.
#
# XXX - silently overrides any user code in methods.
#
class GenericASTBuilder(GenericParser):
def __init__(self, AST, start):
GenericParser.__init__(self, start)
self.AST = AST
def preprocess(self, rule, func):
rebind = lambda lhs, self=self: \
lambda args, lhs=lhs, self=self: \
self.buildASTNode(args, lhs)
lhs, rhs = rule
return rule, rebind(lhs)
def buildASTNode(self, args, lhs):
children = []
for arg in args:
if isinstance(arg, self.AST):
children.append(arg)
else:
children.append(self.terminal(arg))
return self.nonterminal(lhs, children)
def terminal(self, token): return token
def nonterminal(self, type, args):
rv = self.AST(type)
rv[:len(args)] = args
return rv
#
# GenericASTTraversal is a Visitor pattern according to Design Patterns. For
# each node it attempts to invoke the method n_, falling
# back onto the default() method if the n_* can't be found. The preorder
# traversal also looks for an exit hook named n__exit (no default
# routine is called if it's not found). To prematurely halt traversal
# of a subtree, call the prune() method -- this only makes sense for a
# preorder traversal. Node type is determined via the typestring() method.
#
class GenericASTTraversalPruningException:
pass
class GenericASTTraversal:
def __init__(self, ast):
self.ast = ast
def typestring(self, node):
return node.type
def prune(self):
raise GenericASTTraversalPruningException
def preorder(self, node=None):
if node is None:
node = self.ast
try:
name = 'n_' + self.typestring(node)
if hasattr(self, name):
func = getattr(self, name)
func(node)
else:
self.default(node)
except GenericASTTraversalPruningException:
return
for kid in node:
self.preorder(kid)
name = name + '_exit'
if hasattr(self, name):
func = getattr(self, name)
func(node)
def postorder(self, node=None):
if node is None:
node = self.ast
for kid in node:
self.postorder(kid)
name = 'n_' + self.typestring(node)
if hasattr(self, name):
func = getattr(self, name)
func(node)
else:
self.default(node)
def default(self, node):
pass
#
# GenericASTMatcher. AST nodes must have "__getitem__" and "__cmp__"
# implemented.
#
# XXX - makes assumptions about how GenericParser walks the parse tree.
#
class GenericASTMatcher(GenericParser):
def __init__(self, start, ast):
GenericParser.__init__(self, start)
self.ast = ast
def preprocess(self, rule, func):
rebind = lambda func, self=self: \
lambda args, func=func, self=self: \
self.foundMatch(args, func)
lhs, rhs = rule
rhslist = list(rhs)
rhslist.reverse()
return (lhs, tuple(rhslist)), rebind(func)
def foundMatch(self, args, func):
func(args[-1])
return args[-1]
def match_r(self, node):
self.input.insert(0, node)
children = 0
for child in node:
if children == 0:
self.input.insert(0, '(')
children = children + 1
self.match_r(child)
if children > 0:
self.input.insert(0, ')')
def match(self, ast=None):
if ast is None:
ast = self.ast
self.input = []
self.match_r(ast)
self.parse(self.input)
def resolve(self, list):
#
# Resolve ambiguity in favor of the longest RHS.
#
return list[-1]
def _dump(tokens, states):
for i in range(len(states)):
print 'state', i
for (lhs, rhs), pos, parent in states[i]:
print '\t', lhs, '::=',
print string.join(rhs[:pos]),
print '.',
print string.join(rhs[pos:]),
print ',', parent
if i < len(tokens):
print
print 'token', str(tokens[i])
print