Lib.test.test_set.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython-standalone Show documentation
Show all versions of jython-standalone Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
import unittest
from test import test_support
import gc
import weakref
from test_weakref import extra_collect
import operator
import copy
import pickle
from random import randrange, shuffle
import sys
import collections
class PassThru(Exception):
pass
def check_pass_thru():
raise PassThru
yield 1
class BadCmp:
def __hash__(self):
return 1
def __cmp__(self, other):
raise RuntimeError
class ReprWrapper:
'Used to test self-referential repr() calls'
def __repr__(self):
return repr(self.value)
class HashCountingInt(int):
'int-like object that counts the number of times __hash__ is called'
def __init__(self, *args):
self.hash_count = 0
def __hash__(self):
self.hash_count += 1
return int.__hash__(self)
class TestJointOps(unittest.TestCase):
# Tests common to both set and frozenset
def setUp(self):
self.word = word = 'simsalabim'
self.otherword = 'madagascar'
self.letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
self.s = self.thetype(word)
self.d = dict.fromkeys(word)
def test_new_or_init(self):
self.assertRaises(TypeError, self.thetype, [], 2)
self.assertRaises(TypeError, set().__init__, a=1)
def test_uniquification(self):
actual = sorted(self.s)
expected = sorted(self.d)
self.assertEqual(actual, expected)
self.assertRaises(PassThru, self.thetype, check_pass_thru())
self.assertRaises(TypeError, self.thetype, [[]])
def test_len(self):
self.assertEqual(len(self.s), len(self.d))
def test_contains(self):
for c in self.letters:
self.assertEqual(c in self.s, c in self.d)
self.assertRaises(TypeError, self.s.__contains__, [[]])
s = self.thetype([frozenset(self.letters)])
self.assertIn(self.thetype(self.letters), s)
def test_union(self):
u = self.s.union(self.otherword)
for c in self.letters:
self.assertEqual(c in u, c in self.d or c in self.otherword)
self.assertEqual(self.s, self.thetype(self.word))
self.assertEqual(type(u), self.thetype)
self.assertRaises(PassThru, self.s.union, check_pass_thru())
self.assertRaises(TypeError, self.s.union, [[]])
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
self.assertEqual(self.thetype('abcba').union(C('cdc')), set('abcd'))
self.assertEqual(self.thetype('abcba').union(C('efgfe')), set('abcefg'))
self.assertEqual(self.thetype('abcba').union(C('ccb')), set('abc'))
self.assertEqual(self.thetype('abcba').union(C('ef')), set('abcef'))
self.assertEqual(self.thetype('abcba').union(C('ef'), C('fg')), set('abcefg'))
# Issue #6573
x = self.thetype()
self.assertEqual(x.union(set([1]), x, set([2])), self.thetype([1, 2]))
def test_or(self):
i = self.s.union(self.otherword)
self.assertEqual(self.s | set(self.otherword), i)
self.assertEqual(self.s | frozenset(self.otherword), i)
try:
self.s | self.otherword
except TypeError:
pass
else:
self.fail("s|t did not screen-out general iterables")
def test_intersection(self):
i = self.s.intersection(self.otherword)
for c in self.letters:
self.assertEqual(c in i, c in self.d and c in self.otherword)
self.assertEqual(self.s, self.thetype(self.word))
self.assertEqual(type(i), self.thetype)
self.assertRaises(PassThru, self.s.intersection, check_pass_thru())
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
self.assertEqual(self.thetype('abcba').intersection(C('cdc')), set('cc'))
self.assertEqual(self.thetype('abcba').intersection(C('efgfe')), set(''))
self.assertEqual(self.thetype('abcba').intersection(C('ccb')), set('bc'))
self.assertEqual(self.thetype('abcba').intersection(C('ef')), set(''))
self.assertEqual(self.thetype('abcba').intersection(C('cbcf'), C('bag')), set('b'))
s = self.thetype('abcba')
z = s.intersection()
if self.thetype == frozenset():
self.assertEqual(id(s), id(z))
else:
self.assertNotEqual(id(s), id(z))
def test_isdisjoint(self):
def f(s1, s2):
'Pure python equivalent of isdisjoint()'
return not set(s1).intersection(s2)
for larg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef':
s1 = self.thetype(larg)
for rarg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef':
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
s2 = C(rarg)
actual = s1.isdisjoint(s2)
expected = f(s1, s2)
self.assertEqual(actual, expected)
self.assertTrue(actual is True or actual is False)
def test_and(self):
i = self.s.intersection(self.otherword)
self.assertEqual(self.s & set(self.otherword), i)
self.assertEqual(self.s & frozenset(self.otherword), i)
try:
self.s & self.otherword
except TypeError:
pass
else:
self.fail("s&t did not screen-out general iterables")
def test_difference(self):
i = self.s.difference(self.otherword)
for c in self.letters:
self.assertEqual(c in i, c in self.d and c not in self.otherword)
self.assertEqual(self.s, self.thetype(self.word))
self.assertEqual(type(i), self.thetype)
self.assertRaises(PassThru, self.s.difference, check_pass_thru())
self.assertRaises(TypeError, self.s.difference, [[]])
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
self.assertEqual(self.thetype('abcba').difference(C('cdc')), set('ab'))
self.assertEqual(self.thetype('abcba').difference(C('efgfe')), set('abc'))
self.assertEqual(self.thetype('abcba').difference(C('ccb')), set('a'))
self.assertEqual(self.thetype('abcba').difference(C('ef')), set('abc'))
self.assertEqual(self.thetype('abcba').difference(), set('abc'))
self.assertEqual(self.thetype('abcba').difference(C('a'), C('b')), set('c'))
def test_sub(self):
i = self.s.difference(self.otherword)
self.assertEqual(self.s - set(self.otherword), i)
self.assertEqual(self.s - frozenset(self.otherword), i)
try:
self.s - self.otherword
except TypeError:
pass
else:
self.fail("s-t did not screen-out general iterables")
def test_symmetric_difference(self):
i = self.s.symmetric_difference(self.otherword)
for c in self.letters:
self.assertEqual(c in i, (c in self.d) ^ (c in self.otherword))
self.assertEqual(self.s, self.thetype(self.word))
self.assertEqual(type(i), self.thetype)
self.assertRaises(PassThru, self.s.symmetric_difference, check_pass_thru())
self.assertRaises(TypeError, self.s.symmetric_difference, [[]])
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
self.assertEqual(self.thetype('abcba').symmetric_difference(C('cdc')), set('abd'))
self.assertEqual(self.thetype('abcba').symmetric_difference(C('efgfe')), set('abcefg'))
self.assertEqual(self.thetype('abcba').symmetric_difference(C('ccb')), set('a'))
self.assertEqual(self.thetype('abcba').symmetric_difference(C('ef')), set('abcef'))
def test_xor(self):
i = self.s.symmetric_difference(self.otherword)
self.assertEqual(self.s ^ set(self.otherword), i)
self.assertEqual(self.s ^ frozenset(self.otherword), i)
try:
self.s ^ self.otherword
except TypeError:
pass
else:
self.fail("s^t did not screen-out general iterables")
def test_equality(self):
self.assertEqual(self.s, set(self.word))
self.assertEqual(self.s, frozenset(self.word))
self.assertEqual(self.s == self.word, False)
self.assertNotEqual(self.s, set(self.otherword))
self.assertNotEqual(self.s, frozenset(self.otherword))
self.assertEqual(self.s != self.word, True)
def test_setOfFrozensets(self):
t = map(frozenset, ['abcdef', 'bcd', 'bdcb', 'fed', 'fedccba'])
s = self.thetype(t)
self.assertEqual(len(s), 3)
def test_compare(self):
self.assertRaises(TypeError, self.s.__cmp__, self.s)
def test_sub_and_super(self):
p, q, r = map(self.thetype, ['ab', 'abcde', 'def'])
self.assertTrue(p < q)
self.assertTrue(p <= q)
self.assertTrue(q <= q)
self.assertTrue(q > p)
self.assertTrue(q >= p)
self.assertFalse(q < r)
self.assertFalse(q <= r)
self.assertFalse(q > r)
self.assertFalse(q >= r)
self.assertTrue(set('a').issubset('abc'))
self.assertTrue(set('abc').issuperset('a'))
self.assertFalse(set('a').issubset('cbs'))
self.assertFalse(set('cbs').issuperset('a'))
def test_pickling(self):
for i in range(pickle.HIGHEST_PROTOCOL + 1):
p = pickle.dumps(self.s, i)
dup = pickle.loads(p)
self.assertEqual(self.s, dup, "%s != %s" % (self.s, dup))
if type(self.s) not in (set, frozenset):
self.s.x = 10
p = pickle.dumps(self.s)
dup = pickle.loads(p)
self.assertEqual(self.s.x, dup.x)
def test_deepcopy(self):
class Tracer:
def __init__(self, value):
self.value = value
def __hash__(self):
return self.value
def __deepcopy__(self, memo=None):
return Tracer(self.value + 1)
t = Tracer(10)
s = self.thetype([t])
dup = copy.deepcopy(s)
self.assertNotEqual(id(s), id(dup))
for elem in dup:
newt = elem
self.assertNotEqual(id(t), id(newt))
self.assertEqual(t.value + 1, newt.value)
def test_gc(self):
# Create a nest of cycles to exercise overall ref count check
class A:
pass
s = set(A() for i in xrange(1000))
for elem in s:
elem.cycle = s
elem.sub = elem
elem.set = set([elem])
def test_subclass_with_custom_hash(self):
# Bug #1257731
class H(self.thetype):
def __hash__(self):
return int(id(self) & 0x7fffffff)
s=H()
f=set()
f.add(s)
self.assertIn(s, f)
f.remove(s)
f.add(s)
f.discard(s)
def test_badcmp(self):
s = self.thetype([BadCmp()])
# Detect comparison errors during insertion and lookup
self.assertRaises(RuntimeError, self.thetype, [BadCmp(), BadCmp()])
self.assertRaises(RuntimeError, s.__contains__, BadCmp())
# Detect errors during mutating operations
if hasattr(s, 'add'):
self.assertRaises(RuntimeError, s.add, BadCmp())
self.assertRaises(RuntimeError, s.discard, BadCmp())
self.assertRaises(RuntimeError, s.remove, BadCmp())
def test_cyclical_repr(self):
w = ReprWrapper()
s = self.thetype([w])
w.value = s
name = repr(s).partition('(')[0] # strip class name from repr string
self.assertEqual(repr(s), '%s([%s(...)])' % (name, name))
def test_cyclical_print(self):
w = ReprWrapper()
s = self.thetype([w])
w.value = s
fo = open(test_support.TESTFN, "wb")
try:
print >> fo, s,
fo.close()
fo = open(test_support.TESTFN, "rb")
self.assertEqual(fo.read(), repr(s))
finally:
fo.close()
test_support.unlink(test_support.TESTFN)
@unittest.skipIf(test_support.is_jython, "Not meaningful for Jython")
def test_do_not_rehash_dict_keys(self):
n = 10
d = dict.fromkeys(map(HashCountingInt, xrange(n)))
self.assertEqual(sum(elem.hash_count for elem in d), n)
s = self.thetype(d)
self.assertEqual(sum(elem.hash_count for elem in d), n)
s.difference(d)
self.assertEqual(sum(elem.hash_count for elem in d), n)
if hasattr(s, 'symmetric_difference_update'):
s.symmetric_difference_update(d)
self.assertEqual(sum(elem.hash_count for elem in d), n)
d2 = dict.fromkeys(set(d))
self.assertEqual(sum(elem.hash_count for elem in d), n)
d3 = dict.fromkeys(frozenset(d))
self.assertEqual(sum(elem.hash_count for elem in d), n)
d3 = dict.fromkeys(frozenset(d), 123)
self.assertEqual(sum(elem.hash_count for elem in d), n)
self.assertEqual(d3, dict.fromkeys(d, 123))
def test_container_iterator(self):
# Bug #3680: tp_traverse was not implemented for set iterator object
class C(object):
pass
obj = C()
ref = weakref.ref(obj)
container = set([obj, 1])
obj.x = iter(container)
del obj, container
gc.collect()
self.assertTrue(ref() is None, "Cycle was not collected")
class TestSet(TestJointOps):
thetype = set
def test_init(self):
s = self.thetype()
s.__init__(self.word)
self.assertEqual(s, set(self.word))
s.__init__(self.otherword)
self.assertEqual(s, set(self.otherword))
self.assertRaises(TypeError, s.__init__, s, 2);
self.assertRaises(TypeError, s.__init__, 1);
def test_constructor_identity(self):
s = self.thetype(range(3))
t = self.thetype(s)
self.assertNotEqual(id(s), id(t))
def test_hash(self):
self.assertRaises(TypeError, hash, self.s)
def test_clear(self):
self.s.clear()
self.assertEqual(self.s, set())
self.assertEqual(len(self.s), 0)
def test_copy(self):
dup = self.s.copy()
self.assertEqual(self.s, dup)
self.assertNotEqual(id(self.s), id(dup))
def test_add(self):
self.s.add('Q')
self.assertIn('Q', self.s)
dup = self.s.copy()
self.s.add('Q')
self.assertEqual(self.s, dup)
self.assertRaises(TypeError, self.s.add, [])
def test_remove(self):
self.s.remove('a')
self.assertNotIn('a', self.s)
self.assertRaises(KeyError, self.s.remove, 'Q')
self.assertRaises(TypeError, self.s.remove, [])
s = self.thetype([frozenset(self.word)])
self.assertIn(self.thetype(self.word), s)
s.remove(self.thetype(self.word))
self.assertNotIn(self.thetype(self.word), s)
self.assertRaises(KeyError, self.s.remove, self.thetype(self.word))
def test_remove_keyerror_unpacking(self):
# bug: www.python.org/sf/1576657
for v1 in ['Q', (1,)]:
try:
self.s.remove(v1)
except KeyError, e:
v2 = e.args[0]
self.assertEqual(v1, v2)
else:
self.fail()
def test_remove_keyerror_set(self):
key = self.thetype([3, 4])
try:
self.s.remove(key)
except KeyError as e:
self.assertTrue(e.args[0] is key,
"KeyError should be {0}, not {1}".format(key,
e.args[0]))
else:
self.fail()
def test_discard(self):
self.s.discard('a')
self.assertNotIn('a', self.s)
self.s.discard('Q')
self.assertRaises(TypeError, self.s.discard, [])
s = self.thetype([frozenset(self.word)])
self.assertIn(self.thetype(self.word), s)
s.discard(self.thetype(self.word))
self.assertNotIn(self.thetype(self.word), s)
s.discard(self.thetype(self.word))
def test_pop(self):
for i in xrange(len(self.s)):
elem = self.s.pop()
self.assertNotIn(elem, self.s)
self.assertRaises(KeyError, self.s.pop)
def test_update(self):
retval = self.s.update(self.otherword)
self.assertEqual(retval, None)
for c in (self.word + self.otherword):
self.assertIn(c, self.s)
self.assertRaises(PassThru, self.s.update, check_pass_thru())
self.assertRaises(TypeError, self.s.update, [[]])
for p, q in (('cdc', 'abcd'), ('efgfe', 'abcefg'), ('ccb', 'abc'), ('ef', 'abcef')):
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.update(C(p)), None)
self.assertEqual(s, set(q))
for p in ('cdc', 'efgfe', 'ccb', 'ef', 'abcda'):
q = 'ahi'
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.update(C(p), C(q)), None)
self.assertEqual(s, set(s) | set(p) | set(q))
def test_ior(self):
self.s |= set(self.otherword)
for c in (self.word + self.otherword):
self.assertIn(c, self.s)
def test_intersection_update(self):
retval = self.s.intersection_update(self.otherword)
self.assertEqual(retval, None)
for c in (self.word + self.otherword):
if c in self.otherword and c in self.word:
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
self.assertRaises(PassThru, self.s.intersection_update, check_pass_thru())
self.assertRaises(TypeError, self.s.intersection_update, [[]])
for p, q in (('cdc', 'c'), ('efgfe', ''), ('ccb', 'bc'), ('ef', '')):
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.intersection_update(C(p)), None)
self.assertEqual(s, set(q))
ss = 'abcba'
s = self.thetype(ss)
t = 'cbc'
self.assertEqual(s.intersection_update(C(p), C(t)), None)
self.assertEqual(s, set('abcba')&set(p)&set(t))
def test_iand(self):
self.s &= set(self.otherword)
for c in (self.word + self.otherword):
if c in self.otherword and c in self.word:
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
def test_difference_update(self):
retval = self.s.difference_update(self.otherword)
self.assertEqual(retval, None)
for c in (self.word + self.otherword):
if c in self.word and c not in self.otherword:
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
self.assertRaises(PassThru, self.s.difference_update, check_pass_thru())
self.assertRaises(TypeError, self.s.difference_update, [[]])
self.assertRaises(TypeError, self.s.symmetric_difference_update, [[]])
for p, q in (('cdc', 'ab'), ('efgfe', 'abc'), ('ccb', 'a'), ('ef', 'abc')):
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.difference_update(C(p)), None)
self.assertEqual(s, set(q))
s = self.thetype('abcdefghih')
s.difference_update()
self.assertEqual(s, self.thetype('abcdefghih'))
s = self.thetype('abcdefghih')
s.difference_update(C('aba'))
self.assertEqual(s, self.thetype('cdefghih'))
s = self.thetype('abcdefghih')
s.difference_update(C('cdc'), C('aba'))
self.assertEqual(s, self.thetype('efghih'))
def test_isub(self):
self.s -= set(self.otherword)
for c in (self.word + self.otherword):
if c in self.word and c not in self.otherword:
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
def test_symmetric_difference_update(self):
retval = self.s.symmetric_difference_update(self.otherword)
self.assertEqual(retval, None)
for c in (self.word + self.otherword):
if (c in self.word) ^ (c in self.otherword):
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
self.assertRaises(PassThru, self.s.symmetric_difference_update, check_pass_thru())
self.assertRaises(TypeError, self.s.symmetric_difference_update, [[]])
for p, q in (('cdc', 'abd'), ('efgfe', 'abcefg'), ('ccb', 'a'), ('ef', 'abcef')):
for C in set, frozenset, dict.fromkeys, str, unicode, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.symmetric_difference_update(C(p)), None)
self.assertEqual(s, set(q))
def test_ixor(self):
self.s ^= set(self.otherword)
for c in (self.word + self.otherword):
if (c in self.word) ^ (c in self.otherword):
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
def test_inplace_on_self(self):
t = self.s.copy()
t |= t
self.assertEqual(t, self.s)
t &= t
self.assertEqual(t, self.s)
t -= t
self.assertEqual(t, self.thetype())
t = self.s.copy()
t ^= t
self.assertEqual(t, self.thetype())
def test_weakref(self):
s = self.thetype('gallahad')
p = weakref.proxy(s)
self.assertEqual(str(p), str(s))
s = None
extra_collect() # jython
self.assertRaises(ReferenceError, str, p)
# C API test only available in a debug build
if hasattr(set, "test_c_api"):
def test_c_api(self):
self.assertEqual(set().test_c_api(), True)
class SetSubclass(set):
pass
class TestSetSubclass(TestSet):
thetype = SetSubclass
class SetSubclassWithKeywordArgs(set):
def __init__(self, iterable=[], newarg=None):
set.__init__(self, iterable)
class TestSetSubclassWithKeywordArgs(TestSet):
def test_keywords_in_subclass(self):
'SF bug #1486663 -- this used to erroneously raise a TypeError'
SetSubclassWithKeywordArgs(newarg=1)
class TestFrozenSet(TestJointOps):
thetype = frozenset
def test_init(self):
s = self.thetype(self.word)
s.__init__(self.otherword)
self.assertEqual(s, set(self.word))
def test_singleton_empty_frozenset(self):
f = frozenset()
efs = [frozenset(), frozenset([]), frozenset(()), frozenset(''),
frozenset(), frozenset([]), frozenset(()), frozenset(''),
frozenset(xrange(0)), frozenset(frozenset()),
frozenset(f), f]
# All of the empty frozensets should have just one id()
self.assertEqual(len(set(map(id, efs))), 1)
def test_constructor_identity(self):
s = self.thetype(range(3))
t = self.thetype(s)
self.assertEqual(id(s), id(t))
def test_hash(self):
self.assertEqual(hash(self.thetype('abcdeb')),
hash(self.thetype('ebecda')))
# make sure that all permutations give the same hash value
n = 100
seq = [randrange(n) for i in xrange(n)]
results = set()
for i in xrange(200):
shuffle(seq)
results.add(hash(self.thetype(seq)))
self.assertEqual(len(results), 1)
def test_copy(self):
dup = self.s.copy()
self.assertEqual(id(self.s), id(dup))
def test_frozen_as_dictkey(self):
seq = range(10) + list('abcdefg') + ['apple']
key1 = self.thetype(seq)
key2 = self.thetype(reversed(seq))
self.assertEqual(key1, key2)
self.assertNotEqual(id(key1), id(key2))
d = {}
d[key1] = 42
self.assertEqual(d[key2], 42)
def test_hash_caching(self):
f = self.thetype('abcdcda')
self.assertEqual(hash(f), hash(f))
@unittest.skipIf(test_support.is_jython, "tied to CPython's hash implementation")
def test_hash_effectiveness(self):
n = 13
hashvalues = set()
addhashvalue = hashvalues.add
elemmasks = [(i+1, 1<> fo, self.set,
fo.close()
fo = open(test_support.TESTFN, "rb")
self.assertEqual(fo.read(), repr(self.set))
finally:
fo.close()
test_support.unlink(test_support.TESTFN)
def test_length(self):
self.assertEqual(len(self.set), self.length)
def test_self_equality(self):
self.assertEqual(self.set, self.set)
def test_equivalent_equality(self):
self.assertEqual(self.set, self.dup)
def test_copy(self):
self.assertEqual(self.set.copy(), self.dup)
def test_self_union(self):
result = self.set | self.set
self.assertEqual(result, self.dup)
def test_empty_union(self):
result = self.set | empty_set
self.assertEqual(result, self.dup)
def test_union_empty(self):
result = empty_set | self.set
self.assertEqual(result, self.dup)
def test_self_intersection(self):
result = self.set & self.set
self.assertEqual(result, self.dup)
def test_empty_intersection(self):
result = self.set & empty_set
self.assertEqual(result, empty_set)
def test_intersection_empty(self):
result = empty_set & self.set
self.assertEqual(result, empty_set)
def test_self_isdisjoint(self):
result = self.set.isdisjoint(self.set)
self.assertEqual(result, not self.set)
def test_empty_isdisjoint(self):
result = self.set.isdisjoint(empty_set)
self.assertEqual(result, True)
def test_isdisjoint_empty(self):
result = empty_set.isdisjoint(self.set)
self.assertEqual(result, True)
def test_self_symmetric_difference(self):
result = self.set ^ self.set
self.assertEqual(result, empty_set)
def test_empty_symmetric_difference(self):
result = self.set ^ empty_set
self.assertEqual(result, self.set)
def test_self_difference(self):
result = self.set - self.set
self.assertEqual(result, empty_set)
def test_empty_difference(self):
result = self.set - empty_set
self.assertEqual(result, self.dup)
def test_empty_difference_rev(self):
result = empty_set - self.set
self.assertEqual(result, empty_set)
def test_iteration(self):
for v in self.set:
self.assertIn(v, self.values)
# XXX: jython does not use length_hint
if not test_support.is_jython:
setiter = iter(self.set)
# note: __length_hint__ is an internal undocumented API,
# don't rely on it in your own programs
self.assertEqual(setiter.__length_hint__(), len(self.set))
def test_pickling(self):
p = pickle.dumps(self.set)
copy = pickle.loads(p)
self.assertEqual(self.set, copy,
"%s != %s" % (self.set, copy))
#------------------------------------------------------------------------------
class TestBasicOpsEmpty(TestBasicOps):
def setUp(self):
self.case = "empty set"
self.values = []
self.set = set(self.values)
self.dup = set(self.values)
self.length = 0
self.repr = "set([])"
#------------------------------------------------------------------------------
class TestBasicOpsSingleton(TestBasicOps):
def setUp(self):
self.case = "unit set (number)"
self.values = [3]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 1
self.repr = "set([3])"
def test_in(self):
self.assertIn(3, self.set)
def test_not_in(self):
self.assertNotIn(2, self.set)
#------------------------------------------------------------------------------
class TestBasicOpsTuple(TestBasicOps):
def setUp(self):
self.case = "unit set (tuple)"
self.values = [(0, "zero")]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 1
self.repr = "set([(0, 'zero')])"
def test_in(self):
self.assertIn((0, "zero"), self.set)
def test_not_in(self):
self.assertNotIn(9, self.set)
#------------------------------------------------------------------------------
class TestBasicOpsTriple(TestBasicOps):
def setUp(self):
self.case = "triple set"
self.values = [0, "zero", operator.add]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 3
self.repr = None
#------------------------------------------------------------------------------
class TestBasicOpsString(TestBasicOps):
def setUp(self):
self.case = "string set"
self.values = ["a", "b", "c"]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 3
def test_repr(self):
self.check_repr_against_values()
#------------------------------------------------------------------------------
class TestBasicOpsUnicode(TestBasicOps):
def setUp(self):
self.case = "unicode set"
self.values = [u"a", u"b", u"c"]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 3
def test_repr(self):
self.check_repr_against_values()
#------------------------------------------------------------------------------
class TestBasicOpsMixedStringUnicode(TestBasicOps):
def setUp(self):
self.case = "string and bytes set"
self.values = ["a", "b", u"a", u"b"]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 4
def test_repr(self):
with test_support.check_warnings():
self.check_repr_against_values()
#==============================================================================
def baditer():
raise TypeError
yield True
def gooditer():
yield True
class TestExceptionPropagation(unittest.TestCase):
"""SF 628246: Set constructor should not trap iterator TypeErrors"""
def test_instanceWithException(self):
self.assertRaises(TypeError, set, baditer())
def test_instancesWithoutException(self):
# All of these iterables should load without exception.
set([1,2,3])
set((1,2,3))
set({'one':1, 'two':2, 'three':3})
set(xrange(3))
set('abc')
set(gooditer())
@unittest.skipIf(test_support.is_jython, "Jython provides stronger support for concurrent updates")
def test_changingSizeWhileIterating(self):
s = set([1,2,3])
try:
for i in s:
s.update([4])
except RuntimeError:
pass
else:
self.fail("no exception when changing size during iteration")
#==============================================================================
class TestSetOfSets(unittest.TestCase):
def test_constructor(self):
inner = frozenset([1])
outer = set([inner])
element = outer.pop()
self.assertEqual(type(element), frozenset)
outer.add(inner) # Rebuild set of sets with .add method
outer.remove(inner)
self.assertEqual(outer, set()) # Verify that remove worked
outer.discard(inner) # Absence of KeyError indicates working fine
#==============================================================================
class TestBinaryOps(unittest.TestCase):
def setUp(self):
self.set = set((2, 4, 6))
def test_eq(self): # SF bug 643115
self.assertEqual(self.set, set({2:1,4:3,6:5}))
def test_union_subset(self):
result = self.set | set([2])
self.assertEqual(result, set((2, 4, 6)))
def test_union_superset(self):
result = self.set | set([2, 4, 6, 8])
self.assertEqual(result, set([2, 4, 6, 8]))
def test_union_overlap(self):
result = self.set | set([3, 4, 5])
self.assertEqual(result, set([2, 3, 4, 5, 6]))
def test_union_non_overlap(self):
result = self.set | set([8])
self.assertEqual(result, set([2, 4, 6, 8]))
def test_intersection_subset(self):
result = self.set & set((2, 4))
self.assertEqual(result, set((2, 4)))
def test_intersection_superset(self):
result = self.set & set([2, 4, 6, 8])
self.assertEqual(result, set([2, 4, 6]))
def test_intersection_overlap(self):
result = self.set & set([3, 4, 5])
self.assertEqual(result, set([4]))
def test_intersection_non_overlap(self):
result = self.set & set([8])
self.assertEqual(result, empty_set)
def test_isdisjoint_subset(self):
result = self.set.isdisjoint(set((2, 4)))
self.assertEqual(result, False)
def test_isdisjoint_superset(self):
result = self.set.isdisjoint(set([2, 4, 6, 8]))
self.assertEqual(result, False)
def test_isdisjoint_overlap(self):
result = self.set.isdisjoint(set([3, 4, 5]))
self.assertEqual(result, False)
def test_isdisjoint_non_overlap(self):
result = self.set.isdisjoint(set([8]))
self.assertEqual(result, True)
def test_sym_difference_subset(self):
result = self.set ^ set((2, 4))
self.assertEqual(result, set([6]))
def test_sym_difference_superset(self):
result = self.set ^ set((2, 4, 6, 8))
self.assertEqual(result, set([8]))
def test_sym_difference_overlap(self):
result = self.set ^ set((3, 4, 5))
self.assertEqual(result, set([2, 3, 5, 6]))
def test_sym_difference_non_overlap(self):
result = self.set ^ set([8])
self.assertEqual(result, set([2, 4, 6, 8]))
def test_cmp(self):
a, b = set('a'), set('b')
self.assertRaises(TypeError, cmp, a, b)
# You can view this as a buglet: cmp(a, a) does not raise TypeError,
# because __eq__ is tried before __cmp__, and a.__eq__(a) returns True,
# which Python thinks is good enough to synthesize a cmp() result
# without calling __cmp__.
self.assertEqual(cmp(a, a), 0)
self.assertRaises(TypeError, cmp, a, 12)
self.assertRaises(TypeError, cmp, "abc", a)
#==============================================================================
class TestUpdateOps(unittest.TestCase):
def setUp(self):
self.set = set((2, 4, 6))
def test_union_subset(self):
self.set |= set([2])
self.assertEqual(self.set, set((2, 4, 6)))
def test_union_superset(self):
self.set |= set([2, 4, 6, 8])
self.assertEqual(self.set, set([2, 4, 6, 8]))
def test_union_overlap(self):
self.set |= set([3, 4, 5])
self.assertEqual(self.set, set([2, 3, 4, 5, 6]))
def test_union_non_overlap(self):
self.set |= set([8])
self.assertEqual(self.set, set([2, 4, 6, 8]))
def test_union_method_call(self):
self.set.update(set([3, 4, 5]))
self.assertEqual(self.set, set([2, 3, 4, 5, 6]))
def test_intersection_subset(self):
self.set &= set((2, 4))
self.assertEqual(self.set, set((2, 4)))
def test_intersection_superset(self):
self.set &= set([2, 4, 6, 8])
self.assertEqual(self.set, set([2, 4, 6]))
def test_intersection_overlap(self):
self.set &= set([3, 4, 5])
self.assertEqual(self.set, set([4]))
def test_intersection_non_overlap(self):
self.set &= set([8])
self.assertEqual(self.set, empty_set)
def test_intersection_method_call(self):
self.set.intersection_update(set([3, 4, 5]))
self.assertEqual(self.set, set([4]))
def test_sym_difference_subset(self):
self.set ^= set((2, 4))
self.assertEqual(self.set, set([6]))
def test_sym_difference_superset(self):
self.set ^= set((2, 4, 6, 8))
self.assertEqual(self.set, set([8]))
def test_sym_difference_overlap(self):
self.set ^= set((3, 4, 5))
self.assertEqual(self.set, set([2, 3, 5, 6]))
def test_sym_difference_non_overlap(self):
self.set ^= set([8])
self.assertEqual(self.set, set([2, 4, 6, 8]))
def test_sym_difference_method_call(self):
self.set.symmetric_difference_update(set([3, 4, 5]))
self.assertEqual(self.set, set([2, 3, 5, 6]))
def test_difference_subset(self):
self.set -= set((2, 4))
self.assertEqual(self.set, set([6]))
def test_difference_superset(self):
self.set -= set((2, 4, 6, 8))
self.assertEqual(self.set, set([]))
def test_difference_overlap(self):
self.set -= set((3, 4, 5))
self.assertEqual(self.set, set([2, 6]))
def test_difference_non_overlap(self):
self.set -= set([8])
self.assertEqual(self.set, set([2, 4, 6]))
def test_difference_method_call(self):
self.set.difference_update(set([3, 4, 5]))
self.assertEqual(self.set, set([2, 6]))
#==============================================================================
class TestMutate(unittest.TestCase):
def setUp(self):
self.values = ["a", "b", "c"]
self.set = set(self.values)
def test_add_present(self):
self.set.add("c")
self.assertEqual(self.set, set("abc"))
def test_add_absent(self):
self.set.add("d")
self.assertEqual(self.set, set("abcd"))
def test_add_until_full(self):
tmp = set()
expected_len = 0
for v in self.values:
tmp.add(v)
expected_len += 1
self.assertEqual(len(tmp), expected_len)
self.assertEqual(tmp, self.set)
def test_remove_present(self):
self.set.remove("b")
self.assertEqual(self.set, set("ac"))
def test_remove_absent(self):
try:
self.set.remove("d")
self.fail("Removing missing element should have raised LookupError")
except LookupError:
pass
def test_remove_until_empty(self):
expected_len = len(self.set)
for v in self.values:
self.set.remove(v)
expected_len -= 1
self.assertEqual(len(self.set), expected_len)
def test_discard_present(self):
self.set.discard("c")
self.assertEqual(self.set, set("ab"))
def test_discard_absent(self):
self.set.discard("d")
self.assertEqual(self.set, set("abc"))
def test_clear(self):
self.set.clear()
self.assertEqual(len(self.set), 0)
def test_pop(self):
popped = {}
while self.set:
popped[self.set.pop()] = None
self.assertEqual(len(popped), len(self.values))
for v in self.values:
self.assertIn(v, popped)
def test_update_empty_tuple(self):
self.set.update(())
self.assertEqual(self.set, set(self.values))
def test_update_unit_tuple_overlap(self):
self.set.update(("a",))
self.assertEqual(self.set, set(self.values))
def test_update_unit_tuple_non_overlap(self):
self.set.update(("a", "z"))
self.assertEqual(self.set, set(self.values + ["z"]))
#==============================================================================
class TestSubsets(unittest.TestCase):
case2method = {"<=": "issubset",
">=": "issuperset",
}
reverse = {"==": "==",
"!=": "!=",
"<": ">",
">": "<",
"<=": ">=",
">=": "<=",
}
def test_issubset(self):
x = self.left
y = self.right
for case in "!=", "==", "<", "<=", ">", ">=":
expected = case in self.cases
# Test the binary infix spelling.
result = eval("x" + case + "y", locals())
self.assertEqual(result, expected)
# Test the "friendly" method-name spelling, if one exists.
if case in TestSubsets.case2method:
method = getattr(x, TestSubsets.case2method[case])
result = method(y)
self.assertEqual(result, expected)
# Now do the same for the operands reversed.
rcase = TestSubsets.reverse[case]
result = eval("y" + rcase + "x", locals())
self.assertEqual(result, expected)
if rcase in TestSubsets.case2method:
method = getattr(y, TestSubsets.case2method[rcase])
result = method(x)
self.assertEqual(result, expected)
#------------------------------------------------------------------------------
class TestSubsetEqualEmpty(TestSubsets):
left = set()
right = set()
name = "both empty"
cases = "==", "<=", ">="
#------------------------------------------------------------------------------
class TestSubsetEqualNonEmpty(TestSubsets):
left = set([1, 2])
right = set([1, 2])
name = "equal pair"
cases = "==", "<=", ">="
#------------------------------------------------------------------------------
class TestSubsetEmptyNonEmpty(TestSubsets):
left = set()
right = set([1, 2])
name = "one empty, one non-empty"
cases = "!=", "<", "<="
#------------------------------------------------------------------------------
class TestSubsetPartial(TestSubsets):
left = set([1])
right = set([1, 2])
name = "one a non-empty proper subset of other"
cases = "!=", "<", "<="
#------------------------------------------------------------------------------
class TestSubsetNonOverlap(TestSubsets):
left = set([1])
right = set([2])
name = "neither empty, neither contains"
cases = "!="
#==============================================================================
class TestOnlySetsInBinaryOps(unittest.TestCase):
def test_eq_ne(self):
# Unlike the others, this is testing that == and != *are* allowed.
self.assertEqual(self.other == self.set, False)
self.assertEqual(self.set == self.other, False)
self.assertEqual(self.other != self.set, True)
self.assertEqual(self.set != self.other, True)
def test_ge_gt_le_lt(self):
self.assertRaises(TypeError, lambda: self.set < self.other)
self.assertRaises(TypeError, lambda: self.set <= self.other)
self.assertRaises(TypeError, lambda: self.set > self.other)
self.assertRaises(TypeError, lambda: self.set >= self.other)
self.assertRaises(TypeError, lambda: self.other < self.set)
self.assertRaises(TypeError, lambda: self.other <= self.set)
self.assertRaises(TypeError, lambda: self.other > self.set)
self.assertRaises(TypeError, lambda: self.other >= self.set)
def test_update_operator(self):
try:
self.set |= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_update(self):
if self.otherIsIterable:
self.set.update(self.other)
else:
self.assertRaises(TypeError, self.set.update, self.other)
def test_union(self):
self.assertRaises(TypeError, lambda: self.set | self.other)
self.assertRaises(TypeError, lambda: self.other | self.set)
if self.otherIsIterable:
self.set.union(self.other)
else:
self.assertRaises(TypeError, self.set.union, self.other)
def test_intersection_update_operator(self):
try:
self.set &= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_intersection_update(self):
if self.otherIsIterable:
self.set.intersection_update(self.other)
else:
self.assertRaises(TypeError,
self.set.intersection_update,
self.other)
def test_intersection(self):
self.assertRaises(TypeError, lambda: self.set & self.other)
self.assertRaises(TypeError, lambda: self.other & self.set)
if self.otherIsIterable:
self.set.intersection(self.other)
else:
self.assertRaises(TypeError, self.set.intersection, self.other)
def test_sym_difference_update_operator(self):
try:
self.set ^= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_sym_difference_update(self):
if self.otherIsIterable:
self.set.symmetric_difference_update(self.other)
else:
self.assertRaises(TypeError,
self.set.symmetric_difference_update,
self.other)
def test_sym_difference(self):
self.assertRaises(TypeError, lambda: self.set ^ self.other)
self.assertRaises(TypeError, lambda: self.other ^ self.set)
if self.otherIsIterable:
self.set.symmetric_difference(self.other)
else:
self.assertRaises(TypeError, self.set.symmetric_difference, self.other)
def test_difference_update_operator(self):
try:
self.set -= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_difference_update(self):
if self.otherIsIterable:
self.set.difference_update(self.other)
else:
self.assertRaises(TypeError,
self.set.difference_update,
self.other)
def test_difference(self):
self.assertRaises(TypeError, lambda: self.set - self.other)
self.assertRaises(TypeError, lambda: self.other - self.set)
if self.otherIsIterable:
self.set.difference(self.other)
else:
self.assertRaises(TypeError, self.set.difference, self.other)
#------------------------------------------------------------------------------
class TestOnlySetsNumeric(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = set((1, 2, 3))
self.other = 19
self.otherIsIterable = False
#------------------------------------------------------------------------------
class TestOnlySetsDict(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = set((1, 2, 3))
self.other = {1:2, 3:4}
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsOperator(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = set((1, 2, 3))
self.other = operator.add
self.otherIsIterable = False
def test_ge_gt_le_lt(self):
with test_support.check_py3k_warnings():
super(TestOnlySetsOperator, self).test_ge_gt_le_lt()
#------------------------------------------------------------------------------
class TestOnlySetsTuple(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = set((1, 2, 3))
self.other = (2, 4, 6)
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsString(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = set((1, 2, 3))
self.other = 'abc'
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsGenerator(TestOnlySetsInBinaryOps):
def setUp(self):
def gen():
for i in xrange(0, 10, 2):
yield i
self.set = set((1, 2, 3))
self.other = gen()
self.otherIsIterable = True
#==============================================================================
class TestCopying(unittest.TestCase):
def test_copy(self):
dup = list(self.set.copy())
self.assertEqual(len(dup), len(self.set))
for el in self.set:
self.assertIn(el, dup)
pos = dup.index(el)
self.assertIs(el, dup.pop(pos))
self.assertFalse(dup)
def test_deep_copy(self):
dup = copy.deepcopy(self.set)
self.assertSetEqual(dup, self.set)
#------------------------------------------------------------------------------
class TestCopyingEmpty(TestCopying):
def setUp(self):
self.set = set()
#------------------------------------------------------------------------------
class TestCopyingSingleton(TestCopying):
def setUp(self):
self.set = set(["hello"])
#------------------------------------------------------------------------------
class TestCopyingTriple(TestCopying):
def setUp(self):
self.set = set(["zero", 0, None])
#------------------------------------------------------------------------------
class TestCopyingTuple(TestCopying):
def setUp(self):
self.set = set([(1, 2)])
#------------------------------------------------------------------------------
class TestCopyingNested(TestCopying):
def setUp(self):
self.set = set([((1, 2), (3, 4))])
#==============================================================================
class TestIdentities(unittest.TestCase):
def setUp(self):
self.a = set('abracadabra')
self.b = set('alacazam')
def test_binopsVsSubsets(self):
a, b = self.a, self.b
self.assertTrue(a - b < a)
self.assertTrue(b - a < b)
self.assertTrue(a & b < a)
self.assertTrue(a & b < b)
self.assertTrue(a | b > a)
self.assertTrue(a | b > b)
self.assertTrue(a ^ b < a | b)
def test_commutativity(self):
a, b = self.a, self.b
self.assertEqual(a&b, b&a)
self.assertEqual(a|b, b|a)
self.assertEqual(a^b, b^a)
if a != b:
self.assertNotEqual(a-b, b-a)
def test_summations(self):
# check that sums of parts equal the whole
a, b = self.a, self.b
self.assertEqual((a-b)|(a&b)|(b-a), a|b)
self.assertEqual((a&b)|(a^b), a|b)
self.assertEqual(a|(b-a), a|b)
self.assertEqual((a-b)|b, a|b)
self.assertEqual((a-b)|(a&b), a)
self.assertEqual((b-a)|(a&b), b)
self.assertEqual((a-b)|(b-a), a^b)
def test_exclusion(self):
# check that inverse operations show non-overlap
a, b, zero = self.a, self.b, set()
self.assertEqual((a-b)&b, zero)
self.assertEqual((b-a)&a, zero)
self.assertEqual((a&b)&(a^b), zero)
# Tests derived from test_itertools.py =======================================
def R(seqn):
'Regular generator'
for i in seqn:
yield i
class G:
'Sequence using __getitem__'
def __init__(self, seqn):
self.seqn = seqn
def __getitem__(self, i):
return self.seqn[i]
class I:
'Sequence using iterator protocol'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __iter__(self):
return self
def next(self):
if self.i >= len(self.seqn): raise StopIteration
v = self.seqn[self.i]
self.i += 1
return v
class Ig:
'Sequence using iterator protocol defined with a generator'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __iter__(self):
for val in self.seqn:
yield val
class X:
'Missing __getitem__ and __iter__'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def next(self):
if self.i >= len(self.seqn): raise StopIteration
v = self.seqn[self.i]
self.i += 1
return v
class N:
'Iterator missing next()'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __iter__(self):
return self
class E:
'Test propagation of exceptions'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __iter__(self):
return self
def next(self):
3 // 0
class S:
'Test immediate stop'
def __init__(self, seqn):
pass
def __iter__(self):
return self
def next(self):
raise StopIteration
from itertools import chain, imap
def L(seqn):
'Test multiple tiers of iterators'
return chain(imap(lambda x:x, R(Ig(G(seqn)))))
class TestVariousIteratorArgs(unittest.TestCase):
def test_constructor(self):
for cons in (set, frozenset):
for s in ("123", "", range(1000), ('do', 1.2), xrange(2000,2200,5)):
for g in (G, I, Ig, S, L, R):
self.assertSetEqual(cons(g(s)), set(g(s)))
self.assertRaises(TypeError, cons , X(s))
self.assertRaises(TypeError, cons , N(s))
self.assertRaises(ZeroDivisionError, cons , E(s))
def test_inline_methods(self):
s = set('november')
for data in ("123", "", range(1000), ('do', 1.2), xrange(2000,2200,5), 'december'):
for meth in (s.union, s.intersection, s.difference, s.symmetric_difference, s.isdisjoint):
for g in (G, I, Ig, L, R):
expected = meth(data)
actual = meth(G(data))
if isinstance(expected, bool):
self.assertEqual(actual, expected)
else:
self.assertSetEqual(actual, expected)
self.assertRaises(TypeError, meth, X(s))
self.assertRaises(TypeError, meth, N(s))
self.assertRaises(ZeroDivisionError, meth, E(s))
def test_inplace_methods(self):
for data in ("123", "", range(1000), ('do', 1.2), xrange(2000,2200,5), 'december'):
for methname in ('update', 'intersection_update',
'difference_update', 'symmetric_difference_update'):
for g in (G, I, Ig, S, L, R):
s = set('january')
t = s.copy()
getattr(s, methname)(list(g(data)))
getattr(t, methname)(g(data))
self.assertSetEqual(s, t)
self.assertRaises(TypeError, getattr(set('january'), methname), X(data))
self.assertRaises(TypeError, getattr(set('january'), methname), N(data))
self.assertRaises(ZeroDivisionError, getattr(set('january'), methname), E(data))
class bad_eq:
def __eq__(self, other):
if be_bad:
set2.clear()
raise ZeroDivisionError
return self is other
def __hash__(self):
return 0
class bad_dict_clear:
def __eq__(self, other):
if be_bad:
dict2.clear()
return self is other
def __hash__(self):
return 0
class TestWeirdBugs(unittest.TestCase):
def test_8420_set_merge(self):
# This used to segfault
global be_bad, set2, dict2
be_bad = False
set1 = {bad_eq()}
set2 = {bad_eq() for i in range(75)}
be_bad = True
self.assertRaises(ZeroDivisionError, set1.update, set2)
be_bad = False
set1 = {bad_dict_clear()}
dict2 = {bad_dict_clear(): None}
be_bad = True
set1.symmetric_difference_update(dict2)
# Application tests (based on David Eppstein's graph recipes ====================================
def powerset(U):
"""Generates all subsets of a set or sequence U."""
U = iter(U)
try:
x = frozenset([U.next()])
for S in powerset(U):
yield S
yield S | x
except StopIteration:
yield frozenset()
def cube(n):
"""Graph of n-dimensional hypercube."""
singletons = [frozenset([x]) for x in range(n)]
return dict([(x, frozenset([x^s for s in singletons]))
for x in powerset(range(n))])
def linegraph(G):
"""Graph, the vertices of which are edges of G,
with two vertices being adjacent iff the corresponding
edges share a vertex."""
L = {}
for x in G:
for y in G[x]:
nx = [frozenset([x,z]) for z in G[x] if z != y]
ny = [frozenset([y,z]) for z in G[y] if z != x]
L[frozenset([x,y])] = frozenset(nx+ny)
return L
def faces(G):
'Return a set of faces in G. Where a face is a set of vertices on that face'
# currently limited to triangles,squares, and pentagons
f = set()
for v1, edges in G.items():
for v2 in edges:
for v3 in G[v2]:
if v1 == v3:
continue
if v1 in G[v3]:
f.add(frozenset([v1, v2, v3]))
else:
for v4 in G[v3]:
if v4 == v2:
continue
if v1 in G[v4]:
f.add(frozenset([v1, v2, v3, v4]))
else:
for v5 in G[v4]:
if v5 == v3 or v5 == v2:
continue
if v1 in G[v5]:
f.add(frozenset([v1, v2, v3, v4, v5]))
return f
class TestGraphs(unittest.TestCase):
def test_cube(self):
g = cube(3) # vert --> {v1, v2, v3}
vertices1 = set(g)
self.assertEqual(len(vertices1), 8) # eight vertices
for edge in g.values():
self.assertEqual(len(edge), 3) # each vertex connects to three edges
vertices2 = set(v for edges in g.values() for v in edges)
self.assertEqual(vertices1, vertices2) # edge vertices in original set
cubefaces = faces(g)
self.assertEqual(len(cubefaces), 6) # six faces
for face in cubefaces:
self.assertEqual(len(face), 4) # each face is a square
def test_cuboctahedron(self):
# http://en.wikipedia.org/wiki/Cuboctahedron
# 8 triangular faces and 6 square faces
# 12 indentical vertices each connecting a triangle and square
g = cube(3)
cuboctahedron = linegraph(g) # V( --> {V1, V2, V3, V4}
self.assertEqual(len(cuboctahedron), 12)# twelve vertices
vertices = set(cuboctahedron)
for edges in cuboctahedron.values():
self.assertEqual(len(edges), 4) # each vertex connects to four other vertices
othervertices = set(edge for edges in cuboctahedron.values() for edge in edges)
self.assertEqual(vertices, othervertices) # edge vertices in original set
cubofaces = faces(cuboctahedron)
facesizes = collections.defaultdict(int)
for face in cubofaces:
facesizes[len(face)] += 1
self.assertEqual(facesizes[3], 8) # eight triangular faces
self.assertEqual(facesizes[4], 6) # six square faces
for vertex in cuboctahedron:
edge = vertex # Cuboctahedron vertices are edges in Cube
self.assertEqual(len(edge), 2) # Two cube vertices define an edge
for cubevert in edge:
self.assertIn(cubevert, g)
#==============================================================================
def test_main(verbose=None):
test_classes = (
TestSet,
TestSetSubclass,
TestSetSubclassWithKeywordArgs,
TestFrozenSet,
TestFrozenSetSubclass,
TestSetOfSets,
TestExceptionPropagation,
TestBasicOpsEmpty,
TestBasicOpsSingleton,
TestBasicOpsTuple,
TestBasicOpsTriple,
TestBinaryOps,
TestUpdateOps,
TestMutate,
TestSubsetEqualEmpty,
TestSubsetEqualNonEmpty,
TestSubsetEmptyNonEmpty,
TestSubsetPartial,
TestSubsetNonOverlap,
TestOnlySetsNumeric,
TestOnlySetsDict,
TestOnlySetsOperator,
TestOnlySetsTuple,
TestOnlySetsString,
TestOnlySetsGenerator,
TestCopyingEmpty,
TestCopyingSingleton,
TestCopyingTriple,
TestCopyingTuple,
TestCopyingNested,
TestIdentities,
TestVariousIteratorArgs,
TestGraphs,
TestWeirdBugs,
)
test_support.run_unittest(*test_classes)
# verify reference counting
if verbose and hasattr(sys, "gettotalrefcount"):
import gc
counts = [None] * 5
for i in xrange(len(counts)):
test_support.run_unittest(*test_classes)
gc.collect()
counts[i] = sys.gettotalrefcount()
print counts
if __name__ == "__main__":
test_main(verbose=True)