lib-python.2.5.distutils.command.build_clib.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython Show documentation
Show all versions of jython Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
"""distutils.command.build_clib
Implements the Distutils 'build_clib' command, to build a C/C++ library
that is included in the module distribution and needed by an extension
module."""
# This module should be kept compatible with Python 2.1.
__revision__ = "$Id$"
# XXX this module has *lots* of code ripped-off quite transparently from
# build_ext.py -- not surprisingly really, as the work required to build
# a static library from a collection of C source files is not really all
# that different from what's required to build a shared object file from
# a collection of C source files. Nevertheless, I haven't done the
# necessary refactoring to account for the overlap in code between the
# two modules, mainly because a number of subtle details changed in the
# cut 'n paste. Sigh.
import os, string
from types import *
from distutils.core import Command
from distutils.errors import *
from distutils.sysconfig import customize_compiler
from distutils import log
def show_compilers ():
from distutils.ccompiler import show_compilers
show_compilers()
class build_clib (Command):
description = "build C/C++ libraries used by Python extensions"
user_options = [
('build-clib', 'b',
"directory to build C/C++ libraries to"),
('build-temp', 't',
"directory to put temporary build by-products"),
('debug', 'g',
"compile with debugging information"),
('force', 'f',
"forcibly build everything (ignore file timestamps)"),
('compiler=', 'c',
"specify the compiler type"),
]
boolean_options = ['debug', 'force']
help_options = [
('help-compiler', None,
"list available compilers", show_compilers),
]
def initialize_options (self):
self.build_clib = None
self.build_temp = None
# List of libraries to build
self.libraries = None
# Compilation options for all libraries
self.include_dirs = None
self.define = None
self.undef = None
self.debug = None
self.force = 0
self.compiler = None
# initialize_options()
def finalize_options (self):
# This might be confusing: both build-clib and build-temp default
# to build-temp as defined by the "build" command. This is because
# I think that C libraries are really just temporary build
# by-products, at least from the point of view of building Python
# extensions -- but I want to keep my options open.
self.set_undefined_options('build',
('build_temp', 'build_clib'),
('build_temp', 'build_temp'),
('compiler', 'compiler'),
('debug', 'debug'),
('force', 'force'))
self.libraries = self.distribution.libraries
if self.libraries:
self.check_library_list(self.libraries)
if self.include_dirs is None:
self.include_dirs = self.distribution.include_dirs or []
if type(self.include_dirs) is StringType:
self.include_dirs = string.split(self.include_dirs,
os.pathsep)
# XXX same as for build_ext -- what about 'self.define' and
# 'self.undef' ?
# finalize_options()
def run (self):
if not self.libraries:
return
# Yech -- this is cut 'n pasted from build_ext.py!
from distutils.ccompiler import new_compiler
self.compiler = new_compiler(compiler=self.compiler,
dry_run=self.dry_run,
force=self.force)
customize_compiler(self.compiler)
if self.include_dirs is not None:
self.compiler.set_include_dirs(self.include_dirs)
if self.define is not None:
# 'define' option is a list of (name,value) tuples
for (name,value) in self.define:
self.compiler.define_macro(name, value)
if self.undef is not None:
for macro in self.undef:
self.compiler.undefine_macro(macro)
self.build_libraries(self.libraries)
# run()
def check_library_list (self, libraries):
"""Ensure that the list of libraries (presumably provided as a
command option 'libraries') is valid, i.e. it is a list of
2-tuples, where the tuples are (library_name, build_info_dict).
Raise DistutilsSetupError if the structure is invalid anywhere;
just returns otherwise."""
# Yechh, blecch, ackk: this is ripped straight out of build_ext.py,
# with only names changed to protect the innocent!
if type(libraries) is not ListType:
raise DistutilsSetupError, \
"'libraries' option must be a list of tuples"
for lib in libraries:
if type(lib) is not TupleType and len(lib) != 2:
raise DistutilsSetupError, \
"each element of 'libraries' must a 2-tuple"
if type(lib[0]) is not StringType:
raise DistutilsSetupError, \
"first element of each tuple in 'libraries' " + \
"must be a string (the library name)"
if '/' in lib[0] or (os.sep != '/' and os.sep in lib[0]):
raise DistutilsSetupError, \
("bad library name '%s': " +
"may not contain directory separators") % \
lib[0]
if type(lib[1]) is not DictionaryType:
raise DistutilsSetupError, \
"second element of each tuple in 'libraries' " + \
"must be a dictionary (build info)"
# for lib
# check_library_list ()
def get_library_names (self):
# Assume the library list is valid -- 'check_library_list()' is
# called from 'finalize_options()', so it should be!
if not self.libraries:
return None
lib_names = []
for (lib_name, build_info) in self.libraries:
lib_names.append(lib_name)
return lib_names
# get_library_names ()
def get_source_files (self):
self.check_library_list(self.libraries)
filenames = []
for (lib_name, build_info) in self.libraries:
sources = build_info.get('sources')
if (sources is None or
type(sources) not in (ListType, TupleType) ):
raise DistutilsSetupError, \
("in 'libraries' option (library '%s'), "
"'sources' must be present and must be "
"a list of source filenames") % lib_name
filenames.extend(sources)
return filenames
# get_source_files ()
def build_libraries (self, libraries):
for (lib_name, build_info) in libraries:
sources = build_info.get('sources')
if sources is None or type(sources) not in (ListType, TupleType):
raise DistutilsSetupError, \
("in 'libraries' option (library '%s'), " +
"'sources' must be present and must be " +
"a list of source filenames") % lib_name
sources = list(sources)
log.info("building '%s' library", lib_name)
# First, compile the source code to object files in the library
# directory. (This should probably change to putting object
# files in a temporary build directory.)
macros = build_info.get('macros')
include_dirs = build_info.get('include_dirs')
objects = self.compiler.compile(sources,
output_dir=self.build_temp,
macros=macros,
include_dirs=include_dirs,
debug=self.debug)
# Now "link" the object files together into a static library.
# (On Unix at least, this isn't really linking -- it just
# builds an archive. Whatever.)
self.compiler.create_static_lib(objects, lib_name,
output_dir=self.build_clib,
debug=self.debug)
# for libraries
# build_libraries ()
# class build_lib