All Downloads are FREE. Search and download functionalities are using the official Maven repository.

lib-python.2.5.test.test_descr.py Maven / Gradle / Ivy

Go to download

Jython is an implementation of the high-level, dynamic, object-oriented language Python written in 100% Pure Java, and seamlessly integrated with the Java platform. It thus allows you to run Python on any Java platform.

There is a newer version: 2.7.4
Show newest version
# Test enhancements related to descriptors and new-style classes

from test.test_support import verify, vereq, verbose, TestFailed, TESTFN, get_original_stdout
from copy import deepcopy
import warnings
import types

warnings.filterwarnings("ignore",
         r'complex divmod\(\), // and % are deprecated$',
         DeprecationWarning, r'(|%s)$' % __name__)

def veris(a, b):
    if a is not b:
        raise TestFailed, "%r is %r" % (a, b)

def testunop(a, res, expr="len(a)", meth="__len__"):
    if verbose: print "checking", expr
    dict = {'a': a}
    vereq(eval(expr, dict), res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    vereq(m(a), res)
    bm = getattr(a, meth)
    vereq(bm(), res)

def testbinop(a, b, res, expr="a+b", meth="__add__"):
    if verbose: print "checking", expr
    dict = {'a': a, 'b': b}

    # XXX Hack so this passes before 2.3 when -Qnew is specified.
    if meth == "__div__" and 1/2 == 0.5:
        meth = "__truediv__"

    vereq(eval(expr, dict), res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    vereq(m(a, b), res)
    bm = getattr(a, meth)
    vereq(bm(b), res)

def testternop(a, b, c, res, expr="a[b:c]", meth="__getslice__"):
    if verbose: print "checking", expr
    dict = {'a': a, 'b': b, 'c': c}
    vereq(eval(expr, dict), res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    vereq(m(a, b, c), res)
    bm = getattr(a, meth)
    vereq(bm(b, c), res)

def testsetop(a, b, res, stmt="a+=b", meth="__iadd__"):
    if verbose: print "checking", stmt
    dict = {'a': deepcopy(a), 'b': b}
    exec stmt in dict
    vereq(dict['a'], res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    dict['a'] = deepcopy(a)
    m(dict['a'], b)
    vereq(dict['a'], res)
    dict['a'] = deepcopy(a)
    bm = getattr(dict['a'], meth)
    bm(b)
    vereq(dict['a'], res)

def testset2op(a, b, c, res, stmt="a[b]=c", meth="__setitem__"):
    if verbose: print "checking", stmt
    dict = {'a': deepcopy(a), 'b': b, 'c': c}
    exec stmt in dict
    vereq(dict['a'], res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    dict['a'] = deepcopy(a)
    m(dict['a'], b, c)
    vereq(dict['a'], res)
    dict['a'] = deepcopy(a)
    bm = getattr(dict['a'], meth)
    bm(b, c)
    vereq(dict['a'], res)

def testset3op(a, b, c, d, res, stmt="a[b:c]=d", meth="__setslice__"):
    if verbose: print "checking", stmt
    dict = {'a': deepcopy(a), 'b': b, 'c': c, 'd': d}
    exec stmt in dict
    vereq(dict['a'], res)
    t = type(a)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    m = getattr(t, meth)
    vereq(m, t.__dict__[meth])
    dict['a'] = deepcopy(a)
    m(dict['a'], b, c, d)
    vereq(dict['a'], res)
    dict['a'] = deepcopy(a)
    bm = getattr(dict['a'], meth)
    bm(b, c, d)
    vereq(dict['a'], res)

def class_docstrings():
    class Classic:
        "A classic docstring."
    vereq(Classic.__doc__, "A classic docstring.")
    vereq(Classic.__dict__['__doc__'], "A classic docstring.")

    class Classic2:
        pass
    verify(Classic2.__doc__ is None)

    class NewStatic(object):
        "Another docstring."
    vereq(NewStatic.__doc__, "Another docstring.")
    vereq(NewStatic.__dict__['__doc__'], "Another docstring.")

    class NewStatic2(object):
        pass
    verify(NewStatic2.__doc__ is None)

    class NewDynamic(object):
        "Another docstring."
    vereq(NewDynamic.__doc__, "Another docstring.")
    vereq(NewDynamic.__dict__['__doc__'], "Another docstring.")

    class NewDynamic2(object):
        pass
    verify(NewDynamic2.__doc__ is None)

def lists():
    if verbose: print "Testing list operations..."
    testbinop([1], [2], [1,2], "a+b", "__add__")
    testbinop([1,2,3], 2, 1, "b in a", "__contains__")
    testbinop([1,2,3], 4, 0, "b in a", "__contains__")
    testbinop([1,2,3], 1, 2, "a[b]", "__getitem__")
    testternop([1,2,3], 0, 2, [1,2], "a[b:c]", "__getslice__")
    testsetop([1], [2], [1,2], "a+=b", "__iadd__")
    testsetop([1,2], 3, [1,2,1,2,1,2], "a*=b", "__imul__")
    testunop([1,2,3], 3, "len(a)", "__len__")
    testbinop([1,2], 3, [1,2,1,2,1,2], "a*b", "__mul__")
    testbinop([1,2], 3, [1,2,1,2,1,2], "b*a", "__rmul__")
    testset2op([1,2], 1, 3, [1,3], "a[b]=c", "__setitem__")
    testset3op([1,2,3,4], 1, 3, [5,6], [1,5,6,4], "a[b:c]=d", "__setslice__")

def dicts():
    if verbose: print "Testing dict operations..."
    testbinop({1:2}, {2:1}, -1, "cmp(a,b)", "__cmp__")
    testbinop({1:2,3:4}, 1, 1, "b in a", "__contains__")
    testbinop({1:2,3:4}, 2, 0, "b in a", "__contains__")
    testbinop({1:2,3:4}, 1, 2, "a[b]", "__getitem__")
    d = {1:2,3:4}
    l1 = []
    for i in d.keys(): l1.append(i)
    l = []
    for i in iter(d): l.append(i)
    vereq(l, l1)
    l = []
    for i in d.__iter__(): l.append(i)
    vereq(l, l1)
    l = []
    for i in dict.__iter__(d): l.append(i)
    vereq(l, l1)
    d = {1:2, 3:4}
    testunop(d, 2, "len(a)", "__len__")
    vereq(eval(repr(d), {}), d)
    vereq(eval(d.__repr__(), {}), d)
    testset2op({1:2,3:4}, 2, 3, {1:2,2:3,3:4}, "a[b]=c", "__setitem__")

def dict_constructor():
    if verbose:
        print "Testing dict constructor ..."
    d = dict()
    vereq(d, {})
    d = dict({})
    vereq(d, {})
    d = dict({1: 2, 'a': 'b'})
    vereq(d, {1: 2, 'a': 'b'})
    vereq(d, dict(d.items()))
    vereq(d, dict(d.iteritems()))
    d = dict({'one':1, 'two':2})
    vereq(d, dict(one=1, two=2))
    vereq(d, dict(**d))
    vereq(d, dict({"one": 1}, two=2))
    vereq(d, dict([("two", 2)], one=1))
    vereq(d, dict([("one", 100), ("two", 200)], **d))
    verify(d is not dict(**d))
    for badarg in 0, 0L, 0j, "0", [0], (0,):
        try:
            dict(badarg)
        except TypeError:
            pass
        except ValueError:
            if badarg == "0":
                # It's a sequence, and its elements are also sequences (gotta
                # love strings ), but they aren't of length 2, so this
                # one seemed better as a ValueError than a TypeError.
                pass
            else:
                raise TestFailed("no TypeError from dict(%r)" % badarg)
        else:
            raise TestFailed("no TypeError from dict(%r)" % badarg)

    try:
        dict({}, {})
    except TypeError:
        pass
    else:
        raise TestFailed("no TypeError from dict({}, {})")

    class Mapping:
        # Lacks a .keys() method; will be added later.
        dict = {1:2, 3:4, 'a':1j}

    try:
        dict(Mapping())
    except TypeError:
        pass
    else:
        raise TestFailed("no TypeError from dict(incomplete mapping)")

    Mapping.keys = lambda self: self.dict.keys()
    Mapping.__getitem__ = lambda self, i: self.dict[i]
    d = dict(Mapping())
    vereq(d, Mapping.dict)

    # Init from sequence of iterable objects, each producing a 2-sequence.
    class AddressBookEntry:
        def __init__(self, first, last):
            self.first = first
            self.last = last
        def __iter__(self):
            return iter([self.first, self.last])

    d = dict([AddressBookEntry('Tim', 'Warsaw'),
              AddressBookEntry('Barry', 'Peters'),
              AddressBookEntry('Tim', 'Peters'),
              AddressBookEntry('Barry', 'Warsaw')])
    vereq(d, {'Barry': 'Warsaw', 'Tim': 'Peters'})

    d = dict(zip(range(4), range(1, 5)))
    vereq(d, dict([(i, i+1) for i in range(4)]))

    # Bad sequence lengths.
    for bad in [('tooshort',)], [('too', 'long', 'by 1')]:
        try:
            dict(bad)
        except ValueError:
            pass
        else:
            raise TestFailed("no ValueError from dict(%r)" % bad)

def test_dir():
    if verbose:
        print "Testing dir() ..."
    junk = 12
    vereq(dir(), ['junk'])
    del junk

    # Just make sure these don't blow up!
    for arg in 2, 2L, 2j, 2e0, [2], "2", u"2", (2,), {2:2}, type, test_dir:
        dir(arg)

    # Try classic classes.
    class C:
        Cdata = 1
        def Cmethod(self): pass

    cstuff = ['Cdata', 'Cmethod', '__doc__', '__module__']
    vereq(dir(C), cstuff)
    verify('im_self' in dir(C.Cmethod))

    c = C()  # c.__doc__ is an odd thing to see here; ditto c.__module__.
    vereq(dir(c), cstuff)

    c.cdata = 2
    c.cmethod = lambda self: 0
    vereq(dir(c), cstuff + ['cdata', 'cmethod'])
    verify('im_self' in dir(c.Cmethod))

    class A(C):
        Adata = 1
        def Amethod(self): pass

    astuff = ['Adata', 'Amethod'] + cstuff
    vereq(dir(A), astuff)
    verify('im_self' in dir(A.Amethod))
    a = A()
    vereq(dir(a), astuff)
    verify('im_self' in dir(a.Amethod))
    a.adata = 42
    a.amethod = lambda self: 3
    vereq(dir(a), astuff + ['adata', 'amethod'])

    # The same, but with new-style classes.  Since these have object as a
    # base class, a lot more gets sucked in.
    def interesting(strings):
        return [s for s in strings if not s.startswith('_')]

    class C(object):
        Cdata = 1
        def Cmethod(self): pass

    cstuff = ['Cdata', 'Cmethod']
    vereq(interesting(dir(C)), cstuff)

    c = C()
    vereq(interesting(dir(c)), cstuff)
    verify('im_self' in dir(C.Cmethod))

    c.cdata = 2
    c.cmethod = lambda self: 0
    vereq(interesting(dir(c)), cstuff + ['cdata', 'cmethod'])
    verify('im_self' in dir(c.Cmethod))

    class A(C):
        Adata = 1
        def Amethod(self): pass

    astuff = ['Adata', 'Amethod'] + cstuff
    vereq(interesting(dir(A)), astuff)
    verify('im_self' in dir(A.Amethod))
    a = A()
    vereq(interesting(dir(a)), astuff)
    a.adata = 42
    a.amethod = lambda self: 3
    vereq(interesting(dir(a)), astuff + ['adata', 'amethod'])
    verify('im_self' in dir(a.Amethod))

    # Try a module subclass.
    import sys
    class M(type(sys)):
        pass
    minstance = M("m")
    minstance.b = 2
    minstance.a = 1
    names = [x for x in dir(minstance) if x not in ["__name__", "__doc__"]]
    vereq(names, ['a', 'b'])

    class M2(M):
        def getdict(self):
            return "Not a dict!"
        __dict__ = property(getdict)

    m2instance = M2("m2")
    m2instance.b = 2
    m2instance.a = 1
    vereq(m2instance.__dict__, "Not a dict!")
    try:
        dir(m2instance)
    except TypeError:
        pass

    # Two essentially featureless objects, just inheriting stuff from
    # object.
    vereq(dir(None), dir(Ellipsis))

    # Nasty test case for proxied objects
    class Wrapper(object):
        def __init__(self, obj):
            self.__obj = obj
        def __repr__(self):
            return "Wrapper(%s)" % repr(self.__obj)
        def __getitem__(self, key):
            return Wrapper(self.__obj[key])
        def __len__(self):
            return len(self.__obj)
        def __getattr__(self, name):
            return Wrapper(getattr(self.__obj, name))

    class C(object):
        def __getclass(self):
            return Wrapper(type(self))
        __class__ = property(__getclass)

    dir(C()) # This used to segfault

binops = {
    'add': '+',
    'sub': '-',
    'mul': '*',
    'div': '/',
    'mod': '%',
    'divmod': 'divmod',
    'pow': '**',
    'lshift': '<<',
    'rshift': '>>',
    'and': '&',
    'xor': '^',
    'or': '|',
    'cmp': 'cmp',
    'lt': '<',
    'le': '<=',
    'eq': '==',
    'ne': '!=',
    'gt': '>',
    'ge': '>=',
    }

for name, expr in binops.items():
    if expr.islower():
        expr = expr + "(a, b)"
    else:
        expr = 'a %s b' % expr
    binops[name] = expr

unops = {
    'pos': '+',
    'neg': '-',
    'abs': 'abs',
    'invert': '~',
    'int': 'int',
    'long': 'long',
    'float': 'float',
    'oct': 'oct',
    'hex': 'hex',
    }

for name, expr in unops.items():
    if expr.islower():
        expr = expr + "(a)"
    else:
        expr = '%s a' % expr
    unops[name] = expr

def numops(a, b, skip=[]):
    dict = {'a': a, 'b': b}
    for name, expr in binops.items():
        if name not in skip:
            name = "__%s__" % name
            if hasattr(a, name):
                res = eval(expr, dict)
                testbinop(a, b, res, expr, name)
    for name, expr in unops.items():
        if name not in skip:
            name = "__%s__" % name
            if hasattr(a, name):
                res = eval(expr, dict)
                testunop(a, res, expr, name)

def ints():
    if verbose: print "Testing int operations..."
    numops(100, 3)
    # The following crashes in Python 2.2
    vereq((1).__nonzero__(), 1)
    vereq((0).__nonzero__(), 0)
    # This returns 'NotImplemented' in Python 2.2
    class C(int):
        def __add__(self, other):
            return NotImplemented
    vereq(C(5L), 5)
    try:
        C() + ""
    except TypeError:
        pass
    else:
        raise TestFailed, "NotImplemented should have caused TypeError"
    import sys
    try:
        C(sys.maxint+1)
    except OverflowError:
        pass
    else:
        raise TestFailed, "should have raised OverflowError"

def longs():
    if verbose: print "Testing long operations..."
    numops(100L, 3L)

def floats():
    if verbose: print "Testing float operations..."
    numops(100.0, 3.0)

def complexes():
    if verbose: print "Testing complex operations..."
    numops(100.0j, 3.0j, skip=['lt', 'le', 'gt', 'ge', 'int', 'long', 'float'])
    class Number(complex):
        __slots__ = ['prec']
        def __new__(cls, *args, **kwds):
            result = complex.__new__(cls, *args)
            result.prec = kwds.get('prec', 12)
            return result
        def __repr__(self):
            prec = self.prec
            if self.imag == 0.0:
                return "%.*g" % (prec, self.real)
            if self.real == 0.0:
                return "%.*gj" % (prec, self.imag)
            return "(%.*g+%.*gj)" % (prec, self.real, prec, self.imag)
        __str__ = __repr__

    a = Number(3.14, prec=6)
    vereq(repr(a), "3.14")
    vereq(a.prec, 6)

    a = Number(a, prec=2)
    vereq(repr(a), "3.1")
    vereq(a.prec, 2)

    a = Number(234.5)
    vereq(repr(a), "234.5")
    vereq(a.prec, 12)

def spamlists():
    if verbose: print "Testing spamlist operations..."
    import copy, xxsubtype as spam
    def spamlist(l, memo=None):
        import xxsubtype as spam
        return spam.spamlist(l)
    # This is an ugly hack:
    copy._deepcopy_dispatch[spam.spamlist] = spamlist

    testbinop(spamlist([1]), spamlist([2]), spamlist([1,2]), "a+b", "__add__")
    testbinop(spamlist([1,2,3]), 2, 1, "b in a", "__contains__")
    testbinop(spamlist([1,2,3]), 4, 0, "b in a", "__contains__")
    testbinop(spamlist([1,2,3]), 1, 2, "a[b]", "__getitem__")
    testternop(spamlist([1,2,3]), 0, 2, spamlist([1,2]),
               "a[b:c]", "__getslice__")
    testsetop(spamlist([1]), spamlist([2]), spamlist([1,2]),
              "a+=b", "__iadd__")
    testsetop(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "a*=b", "__imul__")
    testunop(spamlist([1,2,3]), 3, "len(a)", "__len__")
    testbinop(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "a*b", "__mul__")
    testbinop(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "b*a", "__rmul__")
    testset2op(spamlist([1,2]), 1, 3, spamlist([1,3]), "a[b]=c", "__setitem__")
    testset3op(spamlist([1,2,3,4]), 1, 3, spamlist([5,6]),
               spamlist([1,5,6,4]), "a[b:c]=d", "__setslice__")
    # Test subclassing
    class C(spam.spamlist):
        def foo(self): return 1
    a = C()
    vereq(a, [])
    vereq(a.foo(), 1)
    a.append(100)
    vereq(a, [100])
    vereq(a.getstate(), 0)
    a.setstate(42)
    vereq(a.getstate(), 42)

def spamdicts():
    if verbose: print "Testing spamdict operations..."
    import copy, xxsubtype as spam
    def spamdict(d, memo=None):
        import xxsubtype as spam
        sd = spam.spamdict()
        for k, v in d.items(): sd[k] = v
        return sd
    # This is an ugly hack:
    copy._deepcopy_dispatch[spam.spamdict] = spamdict

    testbinop(spamdict({1:2}), spamdict({2:1}), -1, "cmp(a,b)", "__cmp__")
    testbinop(spamdict({1:2,3:4}), 1, 1, "b in a", "__contains__")
    testbinop(spamdict({1:2,3:4}), 2, 0, "b in a", "__contains__")
    testbinop(spamdict({1:2,3:4}), 1, 2, "a[b]", "__getitem__")
    d = spamdict({1:2,3:4})
    l1 = []
    for i in d.keys(): l1.append(i)
    l = []
    for i in iter(d): l.append(i)
    vereq(l, l1)
    l = []
    for i in d.__iter__(): l.append(i)
    vereq(l, l1)
    l = []
    for i in type(spamdict({})).__iter__(d): l.append(i)
    vereq(l, l1)
    straightd = {1:2, 3:4}
    spamd = spamdict(straightd)
    testunop(spamd, 2, "len(a)", "__len__")
    testunop(spamd, repr(straightd), "repr(a)", "__repr__")
    testset2op(spamdict({1:2,3:4}), 2, 3, spamdict({1:2,2:3,3:4}),
               "a[b]=c", "__setitem__")
    # Test subclassing
    class C(spam.spamdict):
        def foo(self): return 1
    a = C()
    vereq(a.items(), [])
    vereq(a.foo(), 1)
    a['foo'] = 'bar'
    vereq(a.items(), [('foo', 'bar')])
    vereq(a.getstate(), 0)
    a.setstate(100)
    vereq(a.getstate(), 100)

def pydicts():
    if verbose: print "Testing Python subclass of dict..."
    verify(issubclass(dict, dict))
    verify(isinstance({}, dict))
    d = dict()
    vereq(d, {})
    verify(d.__class__ is dict)
    verify(isinstance(d, dict))
    class C(dict):
        state = -1
        def __init__(self, *a, **kw):
            if a:
                vereq(len(a), 1)
                self.state = a[0]
            if kw:
                for k, v in kw.items(): self[v] = k
        def __getitem__(self, key):
            return self.get(key, 0)
        def __setitem__(self, key, value):
            verify(isinstance(key, type(0)))
            dict.__setitem__(self, key, value)
        def setstate(self, state):
            self.state = state
        def getstate(self):
            return self.state
    verify(issubclass(C, dict))
    a1 = C(12)
    vereq(a1.state, 12)
    a2 = C(foo=1, bar=2)
    vereq(a2[1] == 'foo' and a2[2], 'bar')
    a = C()
    vereq(a.state, -1)
    vereq(a.getstate(), -1)
    a.setstate(0)
    vereq(a.state, 0)
    vereq(a.getstate(), 0)
    a.setstate(10)
    vereq(a.state, 10)
    vereq(a.getstate(), 10)
    vereq(a[42], 0)
    a[42] = 24
    vereq(a[42], 24)
    if verbose: print "pydict stress test ..."
    N = 50
    for i in range(N):
        a[i] = C()
        for j in range(N):
            a[i][j] = i*j
    for i in range(N):
        for j in range(N):
            vereq(a[i][j], i*j)

def pylists():
    if verbose: print "Testing Python subclass of list..."
    class C(list):
        def __getitem__(self, i):
            return list.__getitem__(self, i) + 100
        def __getslice__(self, i, j):
            return (i, j)
    a = C()
    a.extend([0,1,2])
    vereq(a[0], 100)
    vereq(a[1], 101)
    vereq(a[2], 102)
    vereq(a[100:200], (100,200))

def metaclass():
    if verbose: print "Testing __metaclass__..."
    class C:
        __metaclass__ = type
        def __init__(self):
            self.__state = 0
        def getstate(self):
            return self.__state
        def setstate(self, state):
            self.__state = state
    a = C()
    vereq(a.getstate(), 0)
    a.setstate(10)
    vereq(a.getstate(), 10)
    class D:
        class __metaclass__(type):
            def myself(cls): return cls
    vereq(D.myself(), D)
    d = D()
    verify(d.__class__ is D)
    class M1(type):
        def __new__(cls, name, bases, dict):
            dict['__spam__'] = 1
            return type.__new__(cls, name, bases, dict)
    class C:
        __metaclass__ = M1
    vereq(C.__spam__, 1)
    c = C()
    vereq(c.__spam__, 1)

    class _instance(object):
        pass
    class M2(object):
        @staticmethod
        def __new__(cls, name, bases, dict):
            self = object.__new__(cls)
            self.name = name
            self.bases = bases
            self.dict = dict
            return self
        def __call__(self):
            it = _instance()
            # Early binding of methods
            for key in self.dict:
                if key.startswith("__"):
                    continue
                setattr(it, key, self.dict[key].__get__(it, self))
            return it
    class C:
        __metaclass__ = M2
        def spam(self):
            return 42
    vereq(C.name, 'C')
    vereq(C.bases, ())
    verify('spam' in C.dict)
    c = C()
    vereq(c.spam(), 42)

    # More metaclass examples

    class autosuper(type):
        # Automatically add __super to the class
        # This trick only works for dynamic classes
        def __new__(metaclass, name, bases, dict):
            cls = super(autosuper, metaclass).__new__(metaclass,
                                                      name, bases, dict)
            # Name mangling for __super removes leading underscores
            while name[:1] == "_":
                name = name[1:]
            if name:
                name = "_%s__super" % name
            else:
                name = "__super"
            setattr(cls, name, super(cls))
            return cls
    class A:
        __metaclass__ = autosuper
        def meth(self):
            return "A"
    class B(A):
        def meth(self):
            return "B" + self.__super.meth()
    class C(A):
        def meth(self):
            return "C" + self.__super.meth()
    class D(C, B):
        def meth(self):
            return "D" + self.__super.meth()
    vereq(D().meth(), "DCBA")
    class E(B, C):
        def meth(self):
            return "E" + self.__super.meth()
    vereq(E().meth(), "EBCA")

    class autoproperty(type):
        # Automatically create property attributes when methods
        # named _get_x and/or _set_x are found
        def __new__(metaclass, name, bases, dict):
            hits = {}
            for key, val in dict.iteritems():
                if key.startswith("_get_"):
                    key = key[5:]
                    get, set = hits.get(key, (None, None))
                    get = val
                    hits[key] = get, set
                elif key.startswith("_set_"):
                    key = key[5:]
                    get, set = hits.get(key, (None, None))
                    set = val
                    hits[key] = get, set
            for key, (get, set) in hits.iteritems():
                dict[key] = property(get, set)
            return super(autoproperty, metaclass).__new__(metaclass,
                                                        name, bases, dict)
    class A:
        __metaclass__ = autoproperty
        def _get_x(self):
            return -self.__x
        def _set_x(self, x):
            self.__x = -x
    a = A()
    verify(not hasattr(a, "x"))
    a.x = 12
    vereq(a.x, 12)
    vereq(a._A__x, -12)

    class multimetaclass(autoproperty, autosuper):
        # Merge of multiple cooperating metaclasses
        pass
    class A:
        __metaclass__ = multimetaclass
        def _get_x(self):
            return "A"
    class B(A):
        def _get_x(self):
            return "B" + self.__super._get_x()
    class C(A):
        def _get_x(self):
            return "C" + self.__super._get_x()
    class D(C, B):
        def _get_x(self):
            return "D" + self.__super._get_x()
    vereq(D().x, "DCBA")

    # Make sure type(x) doesn't call x.__class__.__init__
    class T(type):
        counter = 0
        def __init__(self, *args):
            T.counter += 1
    class C:
        __metaclass__ = T
    vereq(T.counter, 1)
    a = C()
    vereq(type(a), C)
    vereq(T.counter, 1)

    class C(object): pass
    c = C()
    try: c()
    except TypeError: pass
    else: raise TestFailed, "calling object w/o call method should raise TypeError"

def pymods():
    if verbose: print "Testing Python subclass of module..."
    log = []
    import sys
    MT = type(sys)
    class MM(MT):
        def __init__(self, name):
            MT.__init__(self, name)
        def __getattribute__(self, name):
            log.append(("getattr", name))
            return MT.__getattribute__(self, name)
        def __setattr__(self, name, value):
            log.append(("setattr", name, value))
            MT.__setattr__(self, name, value)
        def __delattr__(self, name):
            log.append(("delattr", name))
            MT.__delattr__(self, name)
    a = MM("a")
    a.foo = 12
    x = a.foo
    del a.foo
    vereq(log, [("setattr", "foo", 12),
                ("getattr", "foo"),
                ("delattr", "foo")])

    # http://python.org/sf/1174712
    try:
        class Module(types.ModuleType, str):
            pass
    except TypeError:
        pass
    else:
        raise TestFailed("inheriting from ModuleType and str at the "
                          "same time should fail")

def multi():
    if verbose: print "Testing multiple inheritance..."
    class C(object):
        def __init__(self):
            self.__state = 0
        def getstate(self):
            return self.__state
        def setstate(self, state):
            self.__state = state
    a = C()
    vereq(a.getstate(), 0)
    a.setstate(10)
    vereq(a.getstate(), 10)
    class D(dict, C):
        def __init__(self):
            type({}).__init__(self)
            C.__init__(self)
    d = D()
    vereq(d.keys(), [])
    d["hello"] = "world"
    vereq(d.items(), [("hello", "world")])
    vereq(d["hello"], "world")
    vereq(d.getstate(), 0)
    d.setstate(10)
    vereq(d.getstate(), 10)
    vereq(D.__mro__, (D, dict, C, object))

    # SF bug #442833
    class Node(object):
        def __int__(self):
            return int(self.foo())
        def foo(self):
            return "23"
    class Frag(Node, list):
        def foo(self):
            return "42"
    vereq(Node().__int__(), 23)
    vereq(int(Node()), 23)
    vereq(Frag().__int__(), 42)
    vereq(int(Frag()), 42)

    # MI mixing classic and new-style classes.

    class A:
        x = 1

    class B(A):
        pass

    class C(A):
        x = 2

    class D(B, C):
        pass
    vereq(D.x, 1)

    # Classic MRO is preserved for a classic base class.
    class E(D, object):
        pass
    vereq(E.__mro__, (E, D, B, A, C, object))
    vereq(E.x, 1)

    # But with a mix of classic bases, their MROs are combined using
    # new-style MRO.
    class F(B, C, object):
        pass
    vereq(F.__mro__, (F, B, C, A, object))
    vereq(F.x, 2)

    # Try something else.
    class C:
        def cmethod(self):
            return "C a"
        def all_method(self):
            return "C b"

    class M1(C, object):
        def m1method(self):
            return "M1 a"
        def all_method(self):
            return "M1 b"

    vereq(M1.__mro__, (M1, C, object))
    m = M1()
    vereq(m.cmethod(), "C a")
    vereq(m.m1method(), "M1 a")
    vereq(m.all_method(), "M1 b")

    class D(C):
        def dmethod(self):
            return "D a"
        def all_method(self):
            return "D b"

    class M2(D, object):
        def m2method(self):
            return "M2 a"
        def all_method(self):
            return "M2 b"

    vereq(M2.__mro__, (M2, D, C, object))
    m = M2()
    vereq(m.cmethod(), "C a")
    vereq(m.dmethod(), "D a")
    vereq(m.m2method(), "M2 a")
    vereq(m.all_method(), "M2 b")

    class M3(M1, M2, object):
        def m3method(self):
            return "M3 a"
        def all_method(self):
            return "M3 b"
    vereq(M3.__mro__, (M3, M1, M2, D, C, object))
    m = M3()
    vereq(m.cmethod(), "C a")
    vereq(m.dmethod(), "D a")
    vereq(m.m1method(), "M1 a")
    vereq(m.m2method(), "M2 a")
    vereq(m.m3method(), "M3 a")
    vereq(m.all_method(), "M3 b")

    class Classic:
        pass
    try:
        class New(Classic):
            __metaclass__ = type
    except TypeError:
        pass
    else:
        raise TestFailed, "new class with only classic bases - shouldn't be"

def diamond():
    if verbose: print "Testing multiple inheritance special cases..."
    class A(object):
        def spam(self): return "A"
    vereq(A().spam(), "A")
    class B(A):
        def boo(self): return "B"
        def spam(self): return "B"
    vereq(B().spam(), "B")
    vereq(B().boo(), "B")
    class C(A):
        def boo(self): return "C"
    vereq(C().spam(), "A")
    vereq(C().boo(), "C")
    class D(B, C): pass
    vereq(D().spam(), "B")
    vereq(D().boo(), "B")
    vereq(D.__mro__, (D, B, C, A, object))
    class E(C, B): pass
    vereq(E().spam(), "B")
    vereq(E().boo(), "C")
    vereq(E.__mro__, (E, C, B, A, object))
    # MRO order disagreement
    try:
        class F(D, E): pass
    except TypeError:
        pass
    else:
        raise TestFailed, "expected MRO order disagreement (F)"
    try:
        class G(E, D): pass
    except TypeError:
        pass
    else:
        raise TestFailed, "expected MRO order disagreement (G)"


# see thread python-dev/2002-October/029035.html
def ex5():
    if verbose: print "Testing ex5 from C3 switch discussion..."
    class A(object): pass
    class B(object): pass
    class C(object): pass
    class X(A): pass
    class Y(A): pass
    class Z(X,B,Y,C): pass
    vereq(Z.__mro__, (Z, X, B, Y, A, C, object))

# see "A Monotonic Superclass Linearization for Dylan",
# by Kim Barrett et al. (OOPSLA 1996)
def monotonicity():
    if verbose: print "Testing MRO monotonicity..."
    class Boat(object): pass
    class DayBoat(Boat): pass
    class WheelBoat(Boat): pass
    class EngineLess(DayBoat): pass
    class SmallMultihull(DayBoat): pass
    class PedalWheelBoat(EngineLess,WheelBoat): pass
    class SmallCatamaran(SmallMultihull): pass
    class Pedalo(PedalWheelBoat,SmallCatamaran): pass

    vereq(PedalWheelBoat.__mro__,
          (PedalWheelBoat, EngineLess, DayBoat, WheelBoat, Boat,
           object))
    vereq(SmallCatamaran.__mro__,
          (SmallCatamaran, SmallMultihull, DayBoat, Boat, object))

    vereq(Pedalo.__mro__,
          (Pedalo, PedalWheelBoat, EngineLess, SmallCatamaran,
           SmallMultihull, DayBoat, WheelBoat, Boat, object))

# see "A Monotonic Superclass Linearization for Dylan",
# by Kim Barrett et al. (OOPSLA 1996)
def consistency_with_epg():
    if verbose: print "Testing consistentcy with EPG..."
    class Pane(object): pass
    class ScrollingMixin(object): pass
    class EditingMixin(object): pass
    class ScrollablePane(Pane,ScrollingMixin): pass
    class EditablePane(Pane,EditingMixin): pass
    class EditableScrollablePane(ScrollablePane,EditablePane): pass

    vereq(EditableScrollablePane.__mro__,
          (EditableScrollablePane, ScrollablePane, EditablePane,
           Pane, ScrollingMixin, EditingMixin, object))

def raises(exc, expected, callable, *args):
    try:
        callable(*args)
    except exc, msg:
        if not str(msg).startswith(expected):
            raise TestFailed, "Message %r, expected %r" % (str(msg),
                                                           expected)
    else:
        raise TestFailed, "Expected %s" % exc

mro_err_msg = """Cannot create a consistent method resolution
order (MRO) for bases """

def mro_disagreement():
    if verbose: print "Testing error messages for MRO disagreement..."
    class A(object): pass
    class B(A): pass
    class C(object): pass
    # Test some very simple errors
    raises(TypeError, "duplicate base class A",
           type, "X", (A, A), {})
    raises(TypeError, mro_err_msg,
           type, "X", (A, B), {})
    raises(TypeError, mro_err_msg,
           type, "X", (A, C, B), {})
    # Test a slightly more complex error
    class GridLayout(object): pass
    class HorizontalGrid(GridLayout): pass
    class VerticalGrid(GridLayout): pass
    class HVGrid(HorizontalGrid, VerticalGrid): pass
    class VHGrid(VerticalGrid, HorizontalGrid): pass
    raises(TypeError, mro_err_msg,
           type, "ConfusedGrid", (HVGrid, VHGrid), {})

def objects():
    if verbose: print "Testing object class..."
    a = object()
    vereq(a.__class__, object)
    vereq(type(a), object)
    b = object()
    verify(a is not b)
    verify(not hasattr(a, "foo"))
    try:
        a.foo = 12
    except (AttributeError, TypeError):
        pass
    else:
        verify(0, "object() should not allow setting a foo attribute")
    verify(not hasattr(object(), "__dict__"))

    class Cdict(object):
        pass
    x = Cdict()
    vereq(x.__dict__, {})
    x.foo = 1
    vereq(x.foo, 1)
    vereq(x.__dict__, {'foo': 1})

def slots():
    if verbose: print "Testing __slots__..."
    class C0(object):
        __slots__ = []
    x = C0()
    verify(not hasattr(x, "__dict__"))
    verify(not hasattr(x, "foo"))

    class C1(object):
        __slots__ = ['a']
    x = C1()
    verify(not hasattr(x, "__dict__"))
    verify(not hasattr(x, "a"))
    x.a = 1
    vereq(x.a, 1)
    x.a = None
    veris(x.a, None)
    del x.a
    verify(not hasattr(x, "a"))

    class C3(object):
        __slots__ = ['a', 'b', 'c']
    x = C3()
    verify(not hasattr(x, "__dict__"))
    verify(not hasattr(x, 'a'))
    verify(not hasattr(x, 'b'))
    verify(not hasattr(x, 'c'))
    x.a = 1
    x.b = 2
    x.c = 3
    vereq(x.a, 1)
    vereq(x.b, 2)
    vereq(x.c, 3)

    class C4(object):
        """Validate name mangling"""
        __slots__ = ['__a']
        def __init__(self, value):
            self.__a = value
        def get(self):
            return self.__a
    x = C4(5)
    verify(not hasattr(x, '__dict__'))
    verify(not hasattr(x, '__a'))
    vereq(x.get(), 5)
    try:
        x.__a = 6
    except AttributeError:
        pass
    else:
        raise TestFailed, "Double underscored names not mangled"

    # Make sure slot names are proper identifiers
    try:
        class C(object):
            __slots__ = [None]
    except TypeError:
        pass
    else:
        raise TestFailed, "[None] slots not caught"
    try:
        class C(object):
            __slots__ = ["foo bar"]
    except TypeError:
        pass
    else:
        raise TestFailed, "['foo bar'] slots not caught"
    try:
        class C(object):
            __slots__ = ["foo\0bar"]
    except TypeError:
        pass
    else:
        raise TestFailed, "['foo\\0bar'] slots not caught"
    try:
        class C(object):
            __slots__ = ["1"]
    except TypeError:
        pass
    else:
        raise TestFailed, "['1'] slots not caught"
    try:
        class C(object):
            __slots__ = [""]
    except TypeError:
        pass
    else:
        raise TestFailed, "[''] slots not caught"
    class C(object):
        __slots__ = ["a", "a_b", "_a", "A0123456789Z"]

    # Test unicode slot names
    try:
        unichr
    except NameError:
        pass
    else:
        # _unicode_to_string used to modify slots in certain circumstances
        slots = (unicode("foo"), unicode("bar"))
        class C(object):
            __slots__ = slots
        x = C()
        x.foo = 5
        vereq(x.foo, 5)
        veris(type(slots[0]), unicode)
        # this used to leak references
        try:
            class C(object):
                __slots__ = [unichr(128)]
        except (TypeError, UnicodeEncodeError):
            pass
        else:
            raise TestFailed, "[unichr(128)] slots not caught"

    # Test leaks
    class Counted(object):
        counter = 0    # counts the number of instances alive
        def __init__(self):
            Counted.counter += 1
        def __del__(self):
            Counted.counter -= 1
    class C(object):
        __slots__ = ['a', 'b', 'c']
    x = C()
    x.a = Counted()
    x.b = Counted()
    x.c = Counted()
    vereq(Counted.counter, 3)
    del x
    vereq(Counted.counter, 0)
    class D(C):
        pass
    x = D()
    x.a = Counted()
    x.z = Counted()
    vereq(Counted.counter, 2)
    del x
    vereq(Counted.counter, 0)
    class E(D):
        __slots__ = ['e']
    x = E()
    x.a = Counted()
    x.z = Counted()
    x.e = Counted()
    vereq(Counted.counter, 3)
    del x
    vereq(Counted.counter, 0)

    # Test cyclical leaks [SF bug 519621]
    class F(object):
        __slots__ = ['a', 'b']
    log = []
    s = F()
    s.a = [Counted(), s]
    vereq(Counted.counter, 1)
    s = None
    import gc
    gc.collect()
    vereq(Counted.counter, 0)

    # Test lookup leaks [SF bug 572567]
    import sys,gc
    class G(object):
        def __cmp__(self, other):
            return 0
    g = G()
    orig_objects = len(gc.get_objects())
    for i in xrange(10):
        g==g
    new_objects = len(gc.get_objects())
    vereq(orig_objects, new_objects)
    class H(object):
        __slots__ = ['a', 'b']
        def __init__(self):
            self.a = 1
            self.b = 2
        def __del__(self):
            assert self.a == 1
            assert self.b == 2

    save_stderr = sys.stderr
    sys.stderr = sys.stdout
    h = H()
    try:
        del h
    finally:
        sys.stderr = save_stderr

def slotspecials():
    if verbose: print "Testing __dict__ and __weakref__ in __slots__..."

    class D(object):
        __slots__ = ["__dict__"]
    a = D()
    verify(hasattr(a, "__dict__"))
    verify(not hasattr(a, "__weakref__"))
    a.foo = 42
    vereq(a.__dict__, {"foo": 42})

    class W(object):
        __slots__ = ["__weakref__"]
    a = W()
    verify(hasattr(a, "__weakref__"))
    verify(not hasattr(a, "__dict__"))
    try:
        a.foo = 42
    except AttributeError:
        pass
    else:
        raise TestFailed, "shouldn't be allowed to set a.foo"

    class C1(W, D):
        __slots__ = []
    a = C1()
    verify(hasattr(a, "__dict__"))
    verify(hasattr(a, "__weakref__"))
    a.foo = 42
    vereq(a.__dict__, {"foo": 42})

    class C2(D, W):
        __slots__ = []
    a = C2()
    verify(hasattr(a, "__dict__"))
    verify(hasattr(a, "__weakref__"))
    a.foo = 42
    vereq(a.__dict__, {"foo": 42})

# MRO order disagreement
#
#    class C3(C1, C2):
#        __slots__ = []
#
#    class C4(C2, C1):
#        __slots__ = []

def dynamics():
    if verbose: print "Testing class attribute propagation..."
    class D(object):
        pass
    class E(D):
        pass
    class F(D):
        pass
    D.foo = 1
    vereq(D.foo, 1)
    # Test that dynamic attributes are inherited
    vereq(E.foo, 1)
    vereq(F.foo, 1)
    # Test dynamic instances
    class C(object):
        pass
    a = C()
    verify(not hasattr(a, "foobar"))
    C.foobar = 2
    vereq(a.foobar, 2)
    C.method = lambda self: 42
    vereq(a.method(), 42)
    C.__repr__ = lambda self: "C()"
    vereq(repr(a), "C()")
    C.__int__ = lambda self: 100
    vereq(int(a), 100)
    vereq(a.foobar, 2)
    verify(not hasattr(a, "spam"))
    def mygetattr(self, name):
        if name == "spam":
            return "spam"
        raise AttributeError
    C.__getattr__ = mygetattr
    vereq(a.spam, "spam")
    a.new = 12
    vereq(a.new, 12)
    def mysetattr(self, name, value):
        if name == "spam":
            raise AttributeError
        return object.__setattr__(self, name, value)
    C.__setattr__ = mysetattr
    try:
        a.spam = "not spam"
    except AttributeError:
        pass
    else:
        verify(0, "expected AttributeError")
    vereq(a.spam, "spam")
    class D(C):
        pass
    d = D()
    d.foo = 1
    vereq(d.foo, 1)

    # Test handling of int*seq and seq*int
    class I(int):
        pass
    vereq("a"*I(2), "aa")
    vereq(I(2)*"a", "aa")
    vereq(2*I(3), 6)
    vereq(I(3)*2, 6)
    vereq(I(3)*I(2), 6)

    # Test handling of long*seq and seq*long
    class L(long):
        pass
    vereq("a"*L(2L), "aa")
    vereq(L(2L)*"a", "aa")
    vereq(2*L(3), 6)
    vereq(L(3)*2, 6)
    vereq(L(3)*L(2), 6)

    # Test comparison of classes with dynamic metaclasses
    class dynamicmetaclass(type):
        pass
    class someclass:
        __metaclass__ = dynamicmetaclass
    verify(someclass != object)

def errors():
    if verbose: print "Testing errors..."

    try:
        class C(list, dict):
            pass
    except TypeError:
        pass
    else:
        verify(0, "inheritance from both list and dict should be illegal")

    try:
        class C(object, None):
            pass
    except TypeError:
        pass
    else:
        verify(0, "inheritance from non-type should be illegal")
    class Classic:
        pass

    try:
        class C(type(len)):
            pass
    except TypeError:
        pass
    else:
        verify(0, "inheritance from CFunction should be illegal")

    try:
        class C(object):
            __slots__ = 1
    except TypeError:
        pass
    else:
        verify(0, "__slots__ = 1 should be illegal")

    try:
        class C(object):
            __slots__ = [1]
    except TypeError:
        pass
    else:
        verify(0, "__slots__ = [1] should be illegal")

def classmethods():
    if verbose: print "Testing class methods..."
    class C(object):
        def foo(*a): return a
        goo = classmethod(foo)
    c = C()
    vereq(C.goo(1), (C, 1))
    vereq(c.goo(1), (C, 1))
    vereq(c.foo(1), (c, 1))
    class D(C):
        pass
    d = D()
    vereq(D.goo(1), (D, 1))
    vereq(d.goo(1), (D, 1))
    vereq(d.foo(1), (d, 1))
    vereq(D.foo(d, 1), (d, 1))
    # Test for a specific crash (SF bug 528132)
    def f(cls, arg): return (cls, arg)
    ff = classmethod(f)
    vereq(ff.__get__(0, int)(42), (int, 42))
    vereq(ff.__get__(0)(42), (int, 42))

    # Test super() with classmethods (SF bug 535444)
    veris(C.goo.im_self, C)
    veris(D.goo.im_self, D)
    veris(super(D,D).goo.im_self, D)
    veris(super(D,d).goo.im_self, D)
    vereq(super(D,D).goo(), (D,))
    vereq(super(D,d).goo(), (D,))

    # Verify that argument is checked for callability (SF bug 753451)
    try:
        classmethod(1).__get__(1)
    except TypeError:
        pass
    else:
        raise TestFailed, "classmethod should check for callability"

    # Verify that classmethod() doesn't allow keyword args
    try:
        classmethod(f, kw=1)
    except TypeError:
        pass
    else:
        raise TestFailed, "classmethod shouldn't accept keyword args"

def classmethods_in_c():
    if verbose: print "Testing C-based class methods..."
    import xxsubtype as spam
    a = (1, 2, 3)
    d = {'abc': 123}
    x, a1, d1 = spam.spamlist.classmeth(*a, **d)
    veris(x, spam.spamlist)
    vereq(a, a1)
    vereq(d, d1)
    x, a1, d1 = spam.spamlist().classmeth(*a, **d)
    veris(x, spam.spamlist)
    vereq(a, a1)
    vereq(d, d1)

def staticmethods():
    if verbose: print "Testing static methods..."
    class C(object):
        def foo(*a): return a
        goo = staticmethod(foo)
    c = C()
    vereq(C.goo(1), (1,))
    vereq(c.goo(1), (1,))
    vereq(c.foo(1), (c, 1,))
    class D(C):
        pass
    d = D()
    vereq(D.goo(1), (1,))
    vereq(d.goo(1), (1,))
    vereq(d.foo(1), (d, 1))
    vereq(D.foo(d, 1), (d, 1))

def staticmethods_in_c():
    if verbose: print "Testing C-based static methods..."
    import xxsubtype as spam
    a = (1, 2, 3)
    d = {"abc": 123}
    x, a1, d1 = spam.spamlist.staticmeth(*a, **d)
    veris(x, None)
    vereq(a, a1)
    vereq(d, d1)
    x, a1, d2 = spam.spamlist().staticmeth(*a, **d)
    veris(x, None)
    vereq(a, a1)
    vereq(d, d1)

def classic():
    if verbose: print "Testing classic classes..."
    class C:
        def foo(*a): return a
        goo = classmethod(foo)
    c = C()
    vereq(C.goo(1), (C, 1))
    vereq(c.goo(1), (C, 1))
    vereq(c.foo(1), (c, 1))
    class D(C):
        pass
    d = D()
    vereq(D.goo(1), (D, 1))
    vereq(d.goo(1), (D, 1))
    vereq(d.foo(1), (d, 1))
    vereq(D.foo(d, 1), (d, 1))
    class E: # *not* subclassing from C
        foo = C.foo
    vereq(E().foo, C.foo) # i.e., unbound
    verify(repr(C.foo.__get__(C())).startswith("= 0)
    vereq(str(c1), repr(c1))
    verify(-1 not in c1)
    for i in range(10):
        verify(i in c1)
    verify(10 not in c1)
    # Test the default behavior for dynamic classes
    class D(object):
        def __getitem__(self, i):
            if 0 <= i < 10: return i
            raise IndexError
    d1 = D()
    d2 = D()
    verify(not not d1)
    verify(id(d1) != id(d2))
    hash(d1)
    hash(d2)
    vereq(cmp(d1, d2), cmp(id(d1), id(d2)))
    vereq(d1, d1)
    verify(d1 != d2)
    verify(not d1 != d1)
    verify(not d1 == d2)
    # Note that the module name appears in str/repr, and that varies
    # depending on whether this test is run standalone or from a framework.
    verify(str(d1).find('D object at ') >= 0)
    vereq(str(d1), repr(d1))
    verify(-1 not in d1)
    for i in range(10):
        verify(i in d1)
    verify(10 not in d1)
    # Test overridden behavior for static classes
    class Proxy(object):
        def __init__(self, x):
            self.x = x
        def __nonzero__(self):
            return not not self.x
        def __hash__(self):
            return hash(self.x)
        def __eq__(self, other):
            return self.x == other
        def __ne__(self, other):
            return self.x != other
        def __cmp__(self, other):
            return cmp(self.x, other.x)
        def __str__(self):
            return "Proxy:%s" % self.x
        def __repr__(self):
            return "Proxy(%r)" % self.x
        def __contains__(self, value):
            return value in self.x
    p0 = Proxy(0)
    p1 = Proxy(1)
    p_1 = Proxy(-1)
    verify(not p0)
    verify(not not p1)
    vereq(hash(p0), hash(0))
    vereq(p0, p0)
    verify(p0 != p1)
    verify(not p0 != p0)
    vereq(not p0, p1)
    vereq(cmp(p0, p1), -1)
    vereq(cmp(p0, p0), 0)
    vereq(cmp(p0, p_1), 1)
    vereq(str(p0), "Proxy:0")
    vereq(repr(p0), "Proxy(0)")
    p10 = Proxy(range(10))
    verify(-1 not in p10)
    for i in range(10):
        verify(i in p10)
    verify(10 not in p10)
    # Test overridden behavior for dynamic classes
    class DProxy(object):
        def __init__(self, x):
            self.x = x
        def __nonzero__(self):
            return not not self.x
        def __hash__(self):
            return hash(self.x)
        def __eq__(self, other):
            return self.x == other
        def __ne__(self, other):
            return self.x != other
        def __cmp__(self, other):
            return cmp(self.x, other.x)
        def __str__(self):
            return "DProxy:%s" % self.x
        def __repr__(self):
            return "DProxy(%r)" % self.x
        def __contains__(self, value):
            return value in self.x
    p0 = DProxy(0)
    p1 = DProxy(1)
    p_1 = DProxy(-1)
    verify(not p0)
    verify(not not p1)
    vereq(hash(p0), hash(0))
    vereq(p0, p0)
    verify(p0 != p1)
    verify(not p0 != p0)
    vereq(not p0, p1)
    vereq(cmp(p0, p1), -1)
    vereq(cmp(p0, p0), 0)
    vereq(cmp(p0, p_1), 1)
    vereq(str(p0), "DProxy:0")
    vereq(repr(p0), "DProxy(0)")
    p10 = DProxy(range(10))
    verify(-1 not in p10)
    for i in range(10):
        verify(i in p10)
    verify(10 not in p10)
    # Safety test for __cmp__
    def unsafecmp(a, b):
        try:
            a.__class__.__cmp__(a, b)
        except TypeError:
            pass
        else:
            raise TestFailed, "shouldn't allow %s.__cmp__(%r, %r)" % (
                a.__class__, a, b)
    unsafecmp(u"123", "123")
    unsafecmp("123", u"123")
    unsafecmp(1, 1.0)
    unsafecmp(1.0, 1)
    unsafecmp(1, 1L)
    unsafecmp(1L, 1)

    class Letter(str):
        def __new__(cls, letter):
            if letter == 'EPS':
                return str.__new__(cls)
            return str.__new__(cls, letter)
        def __str__(self):
            if not self:
                return 'EPS'
            return self

    # sys.stdout needs to be the original to trigger the recursion bug
    import sys
    test_stdout = sys.stdout
    sys.stdout = get_original_stdout()
    try:
        # nothing should actually be printed, this should raise an exception
        print Letter('w')
    except RuntimeError:
        pass
    else:
        raise TestFailed, "expected a RuntimeError for print recursion"
    sys.stdout = test_stdout

def weakrefs():
    if verbose: print "Testing weak references..."
    import weakref
    class C(object):
        pass
    c = C()
    r = weakref.ref(c)
    verify(r() is c)
    del c
    verify(r() is None)
    del r
    class NoWeak(object):
        __slots__ = ['foo']
    no = NoWeak()
    try:
        weakref.ref(no)
    except TypeError, msg:
        verify(str(msg).find("weak reference") >= 0)
    else:
        verify(0, "weakref.ref(no) should be illegal")
    class Weak(object):
        __slots__ = ['foo', '__weakref__']
    yes = Weak()
    r = weakref.ref(yes)
    verify(r() is yes)
    del yes
    verify(r() is None)
    del r

def properties():
    if verbose: print "Testing property..."
    class C(object):
        def getx(self):
            return self.__x
        def setx(self, value):
            self.__x = value
        def delx(self):
            del self.__x
        x = property(getx, setx, delx, doc="I'm the x property.")
    a = C()
    verify(not hasattr(a, "x"))
    a.x = 42
    vereq(a._C__x, 42)
    vereq(a.x, 42)
    del a.x
    verify(not hasattr(a, "x"))
    verify(not hasattr(a, "_C__x"))
    C.x.__set__(a, 100)
    vereq(C.x.__get__(a), 100)
    C.x.__delete__(a)
    verify(not hasattr(a, "x"))

    raw = C.__dict__['x']
    verify(isinstance(raw, property))

    attrs = dir(raw)
    verify("__doc__" in attrs)
    verify("fget" in attrs)
    verify("fset" in attrs)
    verify("fdel" in attrs)

    vereq(raw.__doc__, "I'm the x property.")
    verify(raw.fget is C.__dict__['getx'])
    verify(raw.fset is C.__dict__['setx'])
    verify(raw.fdel is C.__dict__['delx'])

    for attr in "__doc__", "fget", "fset", "fdel":
        try:
            setattr(raw, attr, 42)
        except TypeError, msg:
            if str(msg).find('readonly') < 0:
                raise TestFailed("when setting readonly attr %r on a "
                                 "property, got unexpected TypeError "
                                 "msg %r" % (attr, str(msg)))
        else:
            raise TestFailed("expected TypeError from trying to set "
                             "readonly %r attr on a property" % attr)

    class D(object):
        __getitem__ = property(lambda s: 1/0)

    d = D()
    try:
        for i in d:
            str(i)
    except ZeroDivisionError:
        pass
    else:
        raise TestFailed, "expected ZeroDivisionError from bad property"

    class E(object):
        def getter(self):
            "getter method"
            return 0
        def setter(self, value):
            "setter method"
            pass
        prop = property(getter)
        vereq(prop.__doc__, "getter method")
        prop2 = property(fset=setter)
        vereq(prop2.__doc__, None)

    # this segfaulted in 2.5b2
    try:
        import _testcapi
    except ImportError:
        pass
    else:
        class X(object):
            p = property(_testcapi.test_with_docstring)


def supers():
    if verbose: print "Testing super..."

    class A(object):
        def meth(self, a):
            return "A(%r)" % a

    vereq(A().meth(1), "A(1)")

    class B(A):
        def __init__(self):
            self.__super = super(B, self)
        def meth(self, a):
            return "B(%r)" % a + self.__super.meth(a)

    vereq(B().meth(2), "B(2)A(2)")

    class C(A):
        def meth(self, a):
            return "C(%r)" % a + self.__super.meth(a)
    C._C__super = super(C)

    vereq(C().meth(3), "C(3)A(3)")

    class D(C, B):
        def meth(self, a):
            return "D(%r)" % a + super(D, self).meth(a)

    vereq(D().meth(4), "D(4)C(4)B(4)A(4)")

    # Test for subclassing super

    class mysuper(super):
        def __init__(self, *args):
            return super(mysuper, self).__init__(*args)

    class E(D):
        def meth(self, a):
            return "E(%r)" % a + mysuper(E, self).meth(a)

    vereq(E().meth(5), "E(5)D(5)C(5)B(5)A(5)")

    class F(E):
        def meth(self, a):
            s = self.__super # == mysuper(F, self)
            return "F(%r)[%s]" % (a, s.__class__.__name__) + s.meth(a)
    F._F__super = mysuper(F)

    vereq(F().meth(6), "F(6)[mysuper]E(6)D(6)C(6)B(6)A(6)")

    # Make sure certain errors are raised

    try:
        super(D, 42)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't allow super(D, 42)"

    try:
        super(D, C())
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't allow super(D, C())"

    try:
        super(D).__get__(12)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't allow super(D).__get__(12)"

    try:
        super(D).__get__(C())
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't allow super(D).__get__(C())"

    # Make sure data descriptors can be overridden and accessed via super
    # (new feature in Python 2.3)

    class DDbase(object):
        def getx(self): return 42
        x = property(getx)

    class DDsub(DDbase):
        def getx(self): return "hello"
        x = property(getx)

    dd = DDsub()
    vereq(dd.x, "hello")
    vereq(super(DDsub, dd).x, 42)

    # Ensure that super() lookup of descriptor from classmethod
    # works (SF ID# 743627)

    class Base(object):
        aProp = property(lambda self: "foo")

    class Sub(Base):
        @classmethod
        def test(klass):
            return super(Sub,klass).aProp

    veris(Sub.test(), Base.aProp)

    # Verify that super() doesn't allow keyword args
    try:
        super(Base, kw=1)
    except TypeError:
        pass
    else:
        raise TestFailed, "super shouldn't accept keyword args"

def inherits():
    if verbose: print "Testing inheritance from basic types..."

    class hexint(int):
        def __repr__(self):
            return hex(self)
        def __add__(self, other):
            return hexint(int.__add__(self, other))
        # (Note that overriding __radd__ doesn't work,
        # because the int type gets first dibs.)
    vereq(repr(hexint(7) + 9), "0x10")
    vereq(repr(hexint(1000) + 7), "0x3ef")
    a = hexint(12345)
    vereq(a, 12345)
    vereq(int(a), 12345)
    verify(int(a).__class__ is int)
    vereq(hash(a), hash(12345))
    verify((+a).__class__ is int)
    verify((a >> 0).__class__ is int)
    verify((a << 0).__class__ is int)
    verify((hexint(0) << 12).__class__ is int)
    verify((hexint(0) >> 12).__class__ is int)

    class octlong(long):
        __slots__ = []
        def __str__(self):
            s = oct(self)
            if s[-1] == 'L':
                s = s[:-1]
            return s
        def __add__(self, other):
            return self.__class__(super(octlong, self).__add__(other))
        __radd__ = __add__
    vereq(str(octlong(3) + 5), "010")
    # (Note that overriding __radd__ here only seems to work
    # because the example uses a short int left argument.)
    vereq(str(5 + octlong(3000)), "05675")
    a = octlong(12345)
    vereq(a, 12345L)
    vereq(long(a), 12345L)
    vereq(hash(a), hash(12345L))
    verify(long(a).__class__ is long)
    verify((+a).__class__ is long)
    verify((-a).__class__ is long)
    verify((-octlong(0)).__class__ is long)
    verify((a >> 0).__class__ is long)
    verify((a << 0).__class__ is long)
    verify((a - 0).__class__ is long)
    verify((a * 1).__class__ is long)
    verify((a ** 1).__class__ is long)
    verify((a // 1).__class__ is long)
    verify((1 * a).__class__ is long)
    verify((a | 0).__class__ is long)
    verify((a ^ 0).__class__ is long)
    verify((a & -1L).__class__ is long)
    verify((octlong(0) << 12).__class__ is long)
    verify((octlong(0) >> 12).__class__ is long)
    verify(abs(octlong(0)).__class__ is long)

    # Because octlong overrides __add__, we can't check the absence of +0
    # optimizations using octlong.
    class longclone(long):
        pass
    a = longclone(1)
    verify((a + 0).__class__ is long)
    verify((0 + a).__class__ is long)

    # Check that negative clones don't segfault
    a = longclone(-1)
    vereq(a.__dict__, {})
    vereq(long(a), -1)  # verify PyNumber_Long() copies the sign bit

    class precfloat(float):
        __slots__ = ['prec']
        def __init__(self, value=0.0, prec=12):
            self.prec = int(prec)
            float.__init__(value)
        def __repr__(self):
            return "%.*g" % (self.prec, self)
    vereq(repr(precfloat(1.1)), "1.1")
    a = precfloat(12345)
    vereq(a, 12345.0)
    vereq(float(a), 12345.0)
    verify(float(a).__class__ is float)
    vereq(hash(a), hash(12345.0))
    verify((+a).__class__ is float)

    class madcomplex(complex):
        def __repr__(self):
            return "%.17gj%+.17g" % (self.imag, self.real)
    a = madcomplex(-3, 4)
    vereq(repr(a), "4j-3")
    base = complex(-3, 4)
    veris(base.__class__, complex)
    vereq(a, base)
    vereq(complex(a), base)
    veris(complex(a).__class__, complex)
    a = madcomplex(a)  # just trying another form of the constructor
    vereq(repr(a), "4j-3")
    vereq(a, base)
    vereq(complex(a), base)
    veris(complex(a).__class__, complex)
    vereq(hash(a), hash(base))
    veris((+a).__class__, complex)
    veris((a + 0).__class__, complex)
    vereq(a + 0, base)
    veris((a - 0).__class__, complex)
    vereq(a - 0, base)
    veris((a * 1).__class__, complex)
    vereq(a * 1, base)
    veris((a / 1).__class__, complex)
    vereq(a / 1, base)

    class madtuple(tuple):
        _rev = None
        def rev(self):
            if self._rev is not None:
                return self._rev
            L = list(self)
            L.reverse()
            self._rev = self.__class__(L)
            return self._rev
    a = madtuple((1,2,3,4,5,6,7,8,9,0))
    vereq(a, (1,2,3,4,5,6,7,8,9,0))
    vereq(a.rev(), madtuple((0,9,8,7,6,5,4,3,2,1)))
    vereq(a.rev().rev(), madtuple((1,2,3,4,5,6,7,8,9,0)))
    for i in range(512):
        t = madtuple(range(i))
        u = t.rev()
        v = u.rev()
        vereq(v, t)
    a = madtuple((1,2,3,4,5))
    vereq(tuple(a), (1,2,3,4,5))
    verify(tuple(a).__class__ is tuple)
    vereq(hash(a), hash((1,2,3,4,5)))
    verify(a[:].__class__ is tuple)
    verify((a * 1).__class__ is tuple)
    verify((a * 0).__class__ is tuple)
    verify((a + ()).__class__ is tuple)
    a = madtuple(())
    vereq(tuple(a), ())
    verify(tuple(a).__class__ is tuple)
    verify((a + a).__class__ is tuple)
    verify((a * 0).__class__ is tuple)
    verify((a * 1).__class__ is tuple)
    verify((a * 2).__class__ is tuple)
    verify(a[:].__class__ is tuple)

    class madstring(str):
        _rev = None
        def rev(self):
            if self._rev is not None:
                return self._rev
            L = list(self)
            L.reverse()
            self._rev = self.__class__("".join(L))
            return self._rev
    s = madstring("abcdefghijklmnopqrstuvwxyz")
    vereq(s, "abcdefghijklmnopqrstuvwxyz")
    vereq(s.rev(), madstring("zyxwvutsrqponmlkjihgfedcba"))
    vereq(s.rev().rev(), madstring("abcdefghijklmnopqrstuvwxyz"))
    for i in range(256):
        s = madstring("".join(map(chr, range(i))))
        t = s.rev()
        u = t.rev()
        vereq(u, s)
    s = madstring("12345")
    vereq(str(s), "12345")
    verify(str(s).__class__ is str)

    base = "\x00" * 5
    s = madstring(base)
    vereq(s, base)
    vereq(str(s), base)
    verify(str(s).__class__ is str)
    vereq(hash(s), hash(base))
    vereq({s: 1}[base], 1)
    vereq({base: 1}[s], 1)
    verify((s + "").__class__ is str)
    vereq(s + "", base)
    verify(("" + s).__class__ is str)
    vereq("" + s, base)
    verify((s * 0).__class__ is str)
    vereq(s * 0, "")
    verify((s * 1).__class__ is str)
    vereq(s * 1, base)
    verify((s * 2).__class__ is str)
    vereq(s * 2, base + base)
    verify(s[:].__class__ is str)
    vereq(s[:], base)
    verify(s[0:0].__class__ is str)
    vereq(s[0:0], "")
    verify(s.strip().__class__ is str)
    vereq(s.strip(), base)
    verify(s.lstrip().__class__ is str)
    vereq(s.lstrip(), base)
    verify(s.rstrip().__class__ is str)
    vereq(s.rstrip(), base)
    identitytab = ''.join([chr(i) for i in range(256)])
    verify(s.translate(identitytab).__class__ is str)
    vereq(s.translate(identitytab), base)
    verify(s.translate(identitytab, "x").__class__ is str)
    vereq(s.translate(identitytab, "x"), base)
    vereq(s.translate(identitytab, "\x00"), "")
    verify(s.replace("x", "x").__class__ is str)
    vereq(s.replace("x", "x"), base)
    verify(s.ljust(len(s)).__class__ is str)
    vereq(s.ljust(len(s)), base)
    verify(s.rjust(len(s)).__class__ is str)
    vereq(s.rjust(len(s)), base)
    verify(s.center(len(s)).__class__ is str)
    vereq(s.center(len(s)), base)
    verify(s.lower().__class__ is str)
    vereq(s.lower(), base)

    class madunicode(unicode):
        _rev = None
        def rev(self):
            if self._rev is not None:
                return self._rev
            L = list(self)
            L.reverse()
            self._rev = self.__class__(u"".join(L))
            return self._rev
    u = madunicode("ABCDEF")
    vereq(u, u"ABCDEF")
    vereq(u.rev(), madunicode(u"FEDCBA"))
    vereq(u.rev().rev(), madunicode(u"ABCDEF"))
    base = u"12345"
    u = madunicode(base)
    vereq(unicode(u), base)
    verify(unicode(u).__class__ is unicode)
    vereq(hash(u), hash(base))
    vereq({u: 1}[base], 1)
    vereq({base: 1}[u], 1)
    verify(u.strip().__class__ is unicode)
    vereq(u.strip(), base)
    verify(u.lstrip().__class__ is unicode)
    vereq(u.lstrip(), base)
    verify(u.rstrip().__class__ is unicode)
    vereq(u.rstrip(), base)
    verify(u.replace(u"x", u"x").__class__ is unicode)
    vereq(u.replace(u"x", u"x"), base)
    verify(u.replace(u"xy", u"xy").__class__ is unicode)
    vereq(u.replace(u"xy", u"xy"), base)
    verify(u.center(len(u)).__class__ is unicode)
    vereq(u.center(len(u)), base)
    verify(u.ljust(len(u)).__class__ is unicode)
    vereq(u.ljust(len(u)), base)
    verify(u.rjust(len(u)).__class__ is unicode)
    vereq(u.rjust(len(u)), base)
    verify(u.lower().__class__ is unicode)
    vereq(u.lower(), base)
    verify(u.upper().__class__ is unicode)
    vereq(u.upper(), base)
    verify(u.capitalize().__class__ is unicode)
    vereq(u.capitalize(), base)
    verify(u.title().__class__ is unicode)
    vereq(u.title(), base)
    verify((u + u"").__class__ is unicode)
    vereq(u + u"", base)
    verify((u"" + u).__class__ is unicode)
    vereq(u"" + u, base)
    verify((u * 0).__class__ is unicode)
    vereq(u * 0, u"")
    verify((u * 1).__class__ is unicode)
    vereq(u * 1, base)
    verify((u * 2).__class__ is unicode)
    vereq(u * 2, base + base)
    verify(u[:].__class__ is unicode)
    vereq(u[:], base)
    verify(u[0:0].__class__ is unicode)
    vereq(u[0:0], u"")

    class sublist(list):
        pass
    a = sublist(range(5))
    vereq(a, range(5))
    a.append("hello")
    vereq(a, range(5) + ["hello"])
    a[5] = 5
    vereq(a, range(6))
    a.extend(range(6, 20))
    vereq(a, range(20))
    a[-5:] = []
    vereq(a, range(15))
    del a[10:15]
    vereq(len(a), 10)
    vereq(a, range(10))
    vereq(list(a), range(10))
    vereq(a[0], 0)
    vereq(a[9], 9)
    vereq(a[-10], 0)
    vereq(a[-1], 9)
    vereq(a[:5], range(5))

    class CountedInput(file):
        """Counts lines read by self.readline().

        self.lineno is the 0-based ordinal of the last line read, up to
        a maximum of one greater than the number of lines in the file.

        self.ateof is true if and only if the final "" line has been read,
        at which point self.lineno stops incrementing, and further calls
        to readline() continue to return "".
        """

        lineno = 0
        ateof = 0
        def readline(self):
            if self.ateof:
                return ""
            s = file.readline(self)
            # Next line works too.
            # s = super(CountedInput, self).readline()
            self.lineno += 1
            if s == "":
                self.ateof = 1
            return s

    f = file(name=TESTFN, mode='w')
    lines = ['a\n', 'b\n', 'c\n']
    try:
        f.writelines(lines)
        f.close()
        f = CountedInput(TESTFN)
        for (i, expected) in zip(range(1, 5) + [4], lines + 2 * [""]):
            got = f.readline()
            vereq(expected, got)
            vereq(f.lineno, i)
            vereq(f.ateof, (i > len(lines)))
        f.close()
    finally:
        try:
            f.close()
        except:
            pass
        try:
            import os
            os.unlink(TESTFN)
        except:
            pass

def keywords():
    if verbose:
        print "Testing keyword args to basic type constructors ..."
    vereq(int(x=1), 1)
    vereq(float(x=2), 2.0)
    vereq(long(x=3), 3L)
    vereq(complex(imag=42, real=666), complex(666, 42))
    vereq(str(object=500), '500')
    vereq(unicode(string='abc', errors='strict'), u'abc')
    vereq(tuple(sequence=range(3)), (0, 1, 2))
    vereq(list(sequence=(0, 1, 2)), range(3))
    # note: as of Python 2.3, dict() no longer has an "items" keyword arg

    for constructor in (int, float, long, complex, str, unicode,
                        tuple, list, file):
        try:
            constructor(bogus_keyword_arg=1)
        except TypeError:
            pass
        else:
            raise TestFailed("expected TypeError from bogus keyword "
                             "argument to %r" % constructor)

def restricted():
    # XXX This test is disabled because rexec is not deemed safe
    return
    import rexec
    if verbose:
        print "Testing interaction with restricted execution ..."

    sandbox = rexec.RExec()

    code1 = """f = open(%r, 'w')""" % TESTFN
    code2 = """f = file(%r, 'w')""" % TESTFN
    code3 = """\
f = open(%r)
t = type(f)  # a sneaky way to get the file() constructor
f.close()
f = t(%r, 'w')  # rexec can't catch this by itself
""" % (TESTFN, TESTFN)

    f = open(TESTFN, 'w')  # Create the file so code3 can find it.
    f.close()

    try:
        for code in code1, code2, code3:
            try:
                sandbox.r_exec(code)
            except IOError, msg:
                if str(msg).find("restricted") >= 0:
                    outcome = "OK"
                else:
                    outcome = "got an exception, but not an expected one"
            else:
                outcome = "expected a restricted-execution exception"

            if outcome != "OK":
                raise TestFailed("%s, in %r" % (outcome, code))

    finally:
        try:
            import os
            os.unlink(TESTFN)
        except:
            pass

def str_subclass_as_dict_key():
    if verbose:
        print "Testing a str subclass used as dict key .."

    class cistr(str):
        """Sublcass of str that computes __eq__ case-insensitively.

        Also computes a hash code of the string in canonical form.
        """

        def __init__(self, value):
            self.canonical = value.lower()
            self.hashcode = hash(self.canonical)

        def __eq__(self, other):
            if not isinstance(other, cistr):
                other = cistr(other)
            return self.canonical == other.canonical

        def __hash__(self):
            return self.hashcode

    vereq(cistr('ABC'), 'abc')
    vereq('aBc', cistr('ABC'))
    vereq(str(cistr('ABC')), 'ABC')

    d = {cistr('one'): 1, cistr('two'): 2, cistr('tHree'): 3}
    vereq(d[cistr('one')], 1)
    vereq(d[cistr('tWo')], 2)
    vereq(d[cistr('THrEE')], 3)
    verify(cistr('ONe') in d)
    vereq(d.get(cistr('thrEE')), 3)

def classic_comparisons():
    if verbose: print "Testing classic comparisons..."
    class classic:
        pass
    for base in (classic, int, object):
        if verbose: print "        (base = %s)" % base
        class C(base):
            def __init__(self, value):
                self.value = int(value)
            def __cmp__(self, other):
                if isinstance(other, C):
                    return cmp(self.value, other.value)
                if isinstance(other, int) or isinstance(other, long):
                    return cmp(self.value, other)
                return NotImplemented
        c1 = C(1)
        c2 = C(2)
        c3 = C(3)
        vereq(c1, 1)
        c = {1: c1, 2: c2, 3: c3}
        for x in 1, 2, 3:
            for y in 1, 2, 3:
                verify(cmp(c[x], c[y]) == cmp(x, y), "x=%d, y=%d" % (x, y))
                for op in "<", "<=", "==", "!=", ">", ">=":
                    verify(eval("c[x] %s c[y]" % op) == eval("x %s y" % op),
                           "x=%d, y=%d" % (x, y))
                verify(cmp(c[x], y) == cmp(x, y), "x=%d, y=%d" % (x, y))
                verify(cmp(x, c[y]) == cmp(x, y), "x=%d, y=%d" % (x, y))

def rich_comparisons():
    if verbose:
        print "Testing rich comparisons..."
    class Z(complex):
        pass
    z = Z(1)
    vereq(z, 1+0j)
    vereq(1+0j, z)
    class ZZ(complex):
        def __eq__(self, other):
            try:
                return abs(self - other) <= 1e-6
            except:
                return NotImplemented
    zz = ZZ(1.0000003)
    vereq(zz, 1+0j)
    vereq(1+0j, zz)

    class classic:
        pass
    for base in (classic, int, object, list):
        if verbose: print "        (base = %s)" % base
        class C(base):
            def __init__(self, value):
                self.value = int(value)
            def __cmp__(self, other):
                raise TestFailed, "shouldn't call __cmp__"
            def __eq__(self, other):
                if isinstance(other, C):
                    return self.value == other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value == other
                return NotImplemented
            def __ne__(self, other):
                if isinstance(other, C):
                    return self.value != other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value != other
                return NotImplemented
            def __lt__(self, other):
                if isinstance(other, C):
                    return self.value < other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value < other
                return NotImplemented
            def __le__(self, other):
                if isinstance(other, C):
                    return self.value <= other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value <= other
                return NotImplemented
            def __gt__(self, other):
                if isinstance(other, C):
                    return self.value > other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value > other
                return NotImplemented
            def __ge__(self, other):
                if isinstance(other, C):
                    return self.value >= other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value >= other
                return NotImplemented
        c1 = C(1)
        c2 = C(2)
        c3 = C(3)
        vereq(c1, 1)
        c = {1: c1, 2: c2, 3: c3}
        for x in 1, 2, 3:
            for y in 1, 2, 3:
                for op in "<", "<=", "==", "!=", ">", ">=":
                    verify(eval("c[x] %s c[y]" % op) == eval("x %s y" % op),
                           "x=%d, y=%d" % (x, y))
                    verify(eval("c[x] %s y" % op) == eval("x %s y" % op),
                           "x=%d, y=%d" % (x, y))
                    verify(eval("x %s c[y]" % op) == eval("x %s y" % op),
                           "x=%d, y=%d" % (x, y))

def coercions():
    if verbose: print "Testing coercions..."
    class I(int): pass
    coerce(I(0), 0)
    coerce(0, I(0))
    class L(long): pass
    coerce(L(0), 0)
    coerce(L(0), 0L)
    coerce(0, L(0))
    coerce(0L, L(0))
    class F(float): pass
    coerce(F(0), 0)
    coerce(F(0), 0L)
    coerce(F(0), 0.)
    coerce(0, F(0))
    coerce(0L, F(0))
    coerce(0., F(0))
    class C(complex): pass
    coerce(C(0), 0)
    coerce(C(0), 0L)
    coerce(C(0), 0.)
    coerce(C(0), 0j)
    coerce(0, C(0))
    coerce(0L, C(0))
    coerce(0., C(0))
    coerce(0j, C(0))

def descrdoc():
    if verbose: print "Testing descriptor doc strings..."
    def check(descr, what):
        vereq(descr.__doc__, what)
    check(file.closed, "True if the file is closed") # getset descriptor
    check(file.name, "file name") # member descriptor

def setclass():
    if verbose: print "Testing __class__ assignment..."
    class C(object): pass
    class D(object): pass
    class E(object): pass
    class F(D, E): pass
    for cls in C, D, E, F:
        for cls2 in C, D, E, F:
            x = cls()
            x.__class__ = cls2
            verify(x.__class__ is cls2)
            x.__class__ = cls
            verify(x.__class__ is cls)
    def cant(x, C):
        try:
            x.__class__ = C
        except TypeError:
            pass
        else:
            raise TestFailed, "shouldn't allow %r.__class__ = %r" % (x, C)
        try:
            delattr(x, "__class__")
        except TypeError:
            pass
        else:
            raise TestFailed, "shouldn't allow del %r.__class__" % x
    cant(C(), list)
    cant(list(), C)
    cant(C(), 1)
    cant(C(), object)
    cant(object(), list)
    cant(list(), object)
    class Int(int): __slots__ = []
    cant(2, Int)
    cant(Int(), int)
    cant(True, int)
    cant(2, bool)
    o = object()
    cant(o, type(1))
    cant(o, type(None))
    del o

def setdict():
    if verbose: print "Testing __dict__ assignment..."
    class C(object): pass
    a = C()
    a.__dict__ = {'b': 1}
    vereq(a.b, 1)
    def cant(x, dict):
        try:
            x.__dict__ = dict
        except (AttributeError, TypeError):
            pass
        else:
            raise TestFailed, "shouldn't allow %r.__dict__ = %r" % (x, dict)
    cant(a, None)
    cant(a, [])
    cant(a, 1)
    del a.__dict__ # Deleting __dict__ is allowed

    class Base(object):
        pass
    def verify_dict_readonly(x):
        """
        x has to be an instance of a class inheriting from Base.
        """
        cant(x, {})
        try:
            del x.__dict__
        except (AttributeError, TypeError):
            pass
        else:
            raise TestFailed, "shouldn't allow del %r.__dict__" % x
        dict_descr = Base.__dict__["__dict__"]
        try:
            dict_descr.__set__(x, {})
        except (AttributeError, TypeError):
            pass
        else:
            raise TestFailed, "dict_descr allowed access to %r's dict" % x

    # Classes don't allow __dict__ assignment and have readonly dicts
    class Meta1(type, Base):
        pass
    class Meta2(Base, type):
        pass
    class D(object):
        __metaclass__ = Meta1
    class E(object):
        __metaclass__ = Meta2
    for cls in C, D, E:
        verify_dict_readonly(cls)
        class_dict = cls.__dict__
        try:
            class_dict["spam"] = "eggs"
        except TypeError:
            pass
        else:
            raise TestFailed, "%r's __dict__ can be modified" % cls

    # Modules also disallow __dict__ assignment
    class Module1(types.ModuleType, Base):
        pass
    class Module2(Base, types.ModuleType):
        pass
    for ModuleType in Module1, Module2:
        mod = ModuleType("spam")
        verify_dict_readonly(mod)
        mod.__dict__["spam"] = "eggs"

    # Exception's __dict__ can be replaced, but not deleted
    class Exception1(Exception, Base):
        pass
    class Exception2(Base, Exception):
        pass
    for ExceptionType in Exception, Exception1, Exception2:
        e = ExceptionType()
        e.__dict__ = {"a": 1}
        vereq(e.a, 1)
        try:
            del e.__dict__
        except (TypeError, AttributeError):
            pass
        else:
            raise TestFaied, "%r's __dict__ can be deleted" % e


def pickles():
    if verbose:
        print "Testing pickling and copying new-style classes and objects..."
    import pickle, cPickle

    def sorteditems(d):
        L = d.items()
        L.sort()
        return L

    global C
    class C(object):
        def __init__(self, a, b):
            super(C, self).__init__()
            self.a = a
            self.b = b
        def __repr__(self):
            return "C(%r, %r)" % (self.a, self.b)

    global C1
    class C1(list):
        def __new__(cls, a, b):
            return super(C1, cls).__new__(cls)
        def __getnewargs__(self):
            return (self.a, self.b)
        def __init__(self, a, b):
            self.a = a
            self.b = b
        def __repr__(self):
            return "C1(%r, %r)<%r>" % (self.a, self.b, list(self))

    global C2
    class C2(int):
        def __new__(cls, a, b, val=0):
            return super(C2, cls).__new__(cls, val)
        def __getnewargs__(self):
            return (self.a, self.b, int(self))
        def __init__(self, a, b, val=0):
            self.a = a
            self.b = b
        def __repr__(self):
            return "C2(%r, %r)<%r>" % (self.a, self.b, int(self))

    global C3
    class C3(object):
        def __init__(self, foo):
            self.foo = foo
        def __getstate__(self):
            return self.foo
        def __setstate__(self, foo):
            self.foo = foo

    global C4classic, C4
    class C4classic: # classic
        pass
    class C4(C4classic, object): # mixed inheritance
        pass

    for p in pickle, cPickle:
        for bin in 0, 1:
            if verbose:
                print p.__name__, ["text", "binary"][bin]

            for cls in C, C1, C2:
                s = p.dumps(cls, bin)
                cls2 = p.loads(s)
                verify(cls2 is cls)

            a = C1(1, 2); a.append(42); a.append(24)
            b = C2("hello", "world", 42)
            s = p.dumps((a, b), bin)
            x, y = p.loads(s)
            vereq(x.__class__, a.__class__)
            vereq(sorteditems(x.__dict__), sorteditems(a.__dict__))
            vereq(y.__class__, b.__class__)
            vereq(sorteditems(y.__dict__), sorteditems(b.__dict__))
            vereq(repr(x), repr(a))
            vereq(repr(y), repr(b))
            if verbose:
                print "a = x =", a
                print "b = y =", b
            # Test for __getstate__ and __setstate__ on new style class
            u = C3(42)
            s = p.dumps(u, bin)
            v = p.loads(s)
            veris(u.__class__, v.__class__)
            vereq(u.foo, v.foo)
            # Test for picklability of hybrid class
            u = C4()
            u.foo = 42
            s = p.dumps(u, bin)
            v = p.loads(s)
            veris(u.__class__, v.__class__)
            vereq(u.foo, v.foo)

    # Testing copy.deepcopy()
    if verbose:
        print "deepcopy"
    import copy
    for cls in C, C1, C2:
        cls2 = copy.deepcopy(cls)
        verify(cls2 is cls)

    a = C1(1, 2); a.append(42); a.append(24)
    b = C2("hello", "world", 42)
    x, y = copy.deepcopy((a, b))
    vereq(x.__class__, a.__class__)
    vereq(sorteditems(x.__dict__), sorteditems(a.__dict__))
    vereq(y.__class__, b.__class__)
    vereq(sorteditems(y.__dict__), sorteditems(b.__dict__))
    vereq(repr(x), repr(a))
    vereq(repr(y), repr(b))
    if verbose:
        print "a = x =", a
        print "b = y =", b

def pickleslots():
    if verbose: print "Testing pickling of classes with __slots__ ..."
    import pickle, cPickle
    # Pickling of classes with __slots__ but without __getstate__ should fail
    global B, C, D, E
    class B(object):
        pass
    for base in [object, B]:
        class C(base):
            __slots__ = ['a']
        class D(C):
            pass
        try:
            pickle.dumps(C())
        except TypeError:
            pass
        else:
            raise TestFailed, "should fail: pickle C instance - %s" % base
        try:
            cPickle.dumps(C())
        except TypeError:
            pass
        else:
            raise TestFailed, "should fail: cPickle C instance - %s" % base
        try:
            pickle.dumps(C())
        except TypeError:
            pass
        else:
            raise TestFailed, "should fail: pickle D instance - %s" % base
        try:
            cPickle.dumps(D())
        except TypeError:
            pass
        else:
            raise TestFailed, "should fail: cPickle D instance - %s" % base
        # Give C a nice generic __getstate__ and __setstate__
        class C(base):
            __slots__ = ['a']
            def __getstate__(self):
                try:
                    d = self.__dict__.copy()
                except AttributeError:
                    d = {}
                for cls in self.__class__.__mro__:
                    for sn in cls.__dict__.get('__slots__', ()):
                        try:
                            d[sn] = getattr(self, sn)
                        except AttributeError:
                            pass
                return d
            def __setstate__(self, d):
                for k, v in d.items():
                    setattr(self, k, v)
        class D(C):
            pass
        # Now it should work
        x = C()
        y = pickle.loads(pickle.dumps(x))
        vereq(hasattr(y, 'a'), 0)
        y = cPickle.loads(cPickle.dumps(x))
        vereq(hasattr(y, 'a'), 0)
        x.a = 42
        y = pickle.loads(pickle.dumps(x))
        vereq(y.a, 42)
        y = cPickle.loads(cPickle.dumps(x))
        vereq(y.a, 42)
        x = D()
        x.a = 42
        x.b = 100
        y = pickle.loads(pickle.dumps(x))
        vereq(y.a + y.b, 142)
        y = cPickle.loads(cPickle.dumps(x))
        vereq(y.a + y.b, 142)
        # A subclass that adds a slot should also work
        class E(C):
            __slots__ = ['b']
        x = E()
        x.a = 42
        x.b = "foo"
        y = pickle.loads(pickle.dumps(x))
        vereq(y.a, x.a)
        vereq(y.b, x.b)
        y = cPickle.loads(cPickle.dumps(x))
        vereq(y.a, x.a)
        vereq(y.b, x.b)

def copies():
    if verbose: print "Testing copy.copy() and copy.deepcopy()..."
    import copy
    class C(object):
        pass

    a = C()
    a.foo = 12
    b = copy.copy(a)
    vereq(b.__dict__, a.__dict__)

    a.bar = [1,2,3]
    c = copy.copy(a)
    vereq(c.bar, a.bar)
    verify(c.bar is a.bar)

    d = copy.deepcopy(a)
    vereq(d.__dict__, a.__dict__)
    a.bar.append(4)
    vereq(d.bar, [1,2,3])

def binopoverride():
    if verbose: print "Testing overrides of binary operations..."
    class I(int):
        def __repr__(self):
            return "I(%r)" % int(self)
        def __add__(self, other):
            return I(int(self) + int(other))
        __radd__ = __add__
        def __pow__(self, other, mod=None):
            if mod is None:
                return I(pow(int(self), int(other)))
            else:
                return I(pow(int(self), int(other), int(mod)))
        def __rpow__(self, other, mod=None):
            if mod is None:
                return I(pow(int(other), int(self), mod))
            else:
                return I(pow(int(other), int(self), int(mod)))

    vereq(repr(I(1) + I(2)), "I(3)")
    vereq(repr(I(1) + 2), "I(3)")
    vereq(repr(1 + I(2)), "I(3)")
    vereq(repr(I(2) ** I(3)), "I(8)")
    vereq(repr(2 ** I(3)), "I(8)")
    vereq(repr(I(2) ** 3), "I(8)")
    vereq(repr(pow(I(2), I(3), I(5))), "I(3)")
    class S(str):
        def __eq__(self, other):
            return self.lower() == other.lower()

def subclasspropagation():
    if verbose: print "Testing propagation of slot functions to subclasses..."
    class A(object):
        pass
    class B(A):
        pass
    class C(A):
        pass
    class D(B, C):
        pass
    d = D()
    orig_hash = hash(d) # related to id(d) in platform-dependent ways
    A.__hash__ = lambda self: 42
    vereq(hash(d), 42)
    C.__hash__ = lambda self: 314
    vereq(hash(d), 314)
    B.__hash__ = lambda self: 144
    vereq(hash(d), 144)
    D.__hash__ = lambda self: 100
    vereq(hash(d), 100)
    del D.__hash__
    vereq(hash(d), 144)
    del B.__hash__
    vereq(hash(d), 314)
    del C.__hash__
    vereq(hash(d), 42)
    del A.__hash__
    vereq(hash(d), orig_hash)
    d.foo = 42
    d.bar = 42
    vereq(d.foo, 42)
    vereq(d.bar, 42)
    def __getattribute__(self, name):
        if name == "foo":
            return 24
        return object.__getattribute__(self, name)
    A.__getattribute__ = __getattribute__
    vereq(d.foo, 24)
    vereq(d.bar, 42)
    def __getattr__(self, name):
        if name in ("spam", "foo", "bar"):
            return "hello"
        raise AttributeError, name
    B.__getattr__ = __getattr__
    vereq(d.spam, "hello")
    vereq(d.foo, 24)
    vereq(d.bar, 42)
    del A.__getattribute__
    vereq(d.foo, 42)
    del d.foo
    vereq(d.foo, "hello")
    vereq(d.bar, 42)
    del B.__getattr__
    try:
        d.foo
    except AttributeError:
        pass
    else:
        raise TestFailed, "d.foo should be undefined now"

    # Test a nasty bug in recurse_down_subclasses()
    import gc
    class A(object):
        pass
    class B(A):
        pass
    del B
    gc.collect()
    A.__setitem__ = lambda *a: None # crash

def buffer_inherit():
    import binascii
    # SF bug [#470040] ParseTuple t# vs subclasses.
    if verbose:
        print "Testing that buffer interface is inherited ..."

    class MyStr(str):
        pass
    base = 'abc'
    m = MyStr(base)
    # b2a_hex uses the buffer interface to get its argument's value, via
    # PyArg_ParseTuple 't#' code.
    vereq(binascii.b2a_hex(m), binascii.b2a_hex(base))

    # It's not clear that unicode will continue to support the character
    # buffer interface, and this test will fail if that's taken away.
    class MyUni(unicode):
        pass
    base = u'abc'
    m = MyUni(base)
    vereq(binascii.b2a_hex(m), binascii.b2a_hex(base))

    class MyInt(int):
        pass
    m = MyInt(42)
    try:
        binascii.b2a_hex(m)
        raise TestFailed('subclass of int should not have a buffer interface')
    except TypeError:
        pass

def str_of_str_subclass():
    import binascii
    import cStringIO

    if verbose:
        print "Testing __str__ defined in subclass of str ..."

    class octetstring(str):
        def __str__(self):
            return binascii.b2a_hex(self)
        def __repr__(self):
            return self + " repr"

    o = octetstring('A')
    vereq(type(o), octetstring)
    vereq(type(str(o)), str)
    vereq(type(repr(o)), str)
    vereq(ord(o), 0x41)
    vereq(str(o), '41')
    vereq(repr(o), 'A repr')
    vereq(o.__str__(), '41')
    vereq(o.__repr__(), 'A repr')

    capture = cStringIO.StringIO()
    # Calling str() or not exercises different internal paths.
    print >> capture, o
    print >> capture, str(o)
    vereq(capture.getvalue(), '41\n41\n')
    capture.close()

def kwdargs():
    if verbose: print "Testing keyword arguments to __init__, __call__..."
    def f(a): return a
    vereq(f.__call__(a=42), 42)
    a = []
    list.__init__(a, sequence=[0, 1, 2])
    vereq(a, [0, 1, 2])

def recursive__call__():
    if verbose: print ("Testing recursive __call__() by setting to instance of "
                        "class ...")
    class A(object):
        pass

    A.__call__ = A()
    try:
        A()()
    except RuntimeError:
        pass
    else:
        raise TestFailed("Recursion limit should have been reached for "
                         "__call__()")

def delhook():
    if verbose: print "Testing __del__ hook..."
    log = []
    class C(object):
        def __del__(self):
            log.append(1)
    c = C()
    vereq(log, [])
    del c
    vereq(log, [1])

    class D(object): pass
    d = D()
    try: del d[0]
    except TypeError: pass
    else: raise TestFailed, "invalid del() didn't raise TypeError"

def hashinherit():
    if verbose: print "Testing hash of mutable subclasses..."

    class mydict(dict):
        pass
    d = mydict()
    try:
        hash(d)
    except TypeError:
        pass
    else:
        raise TestFailed, "hash() of dict subclass should fail"

    class mylist(list):
        pass
    d = mylist()
    try:
        hash(d)
    except TypeError:
        pass
    else:
        raise TestFailed, "hash() of list subclass should fail"

def strops():
    try: 'a' + 5
    except TypeError: pass
    else: raise TestFailed, "'' + 5 doesn't raise TypeError"

    try: ''.split('')
    except ValueError: pass
    else: raise TestFailed, "''.split('') doesn't raise ValueError"

    try: ''.join([0])
    except TypeError: pass
    else: raise TestFailed, "''.join([0]) doesn't raise TypeError"

    try: ''.rindex('5')
    except ValueError: pass
    else: raise TestFailed, "''.rindex('5') doesn't raise ValueError"

    try: '%(n)s' % None
    except TypeError: pass
    else: raise TestFailed, "'%(n)s' % None doesn't raise TypeError"

    try: '%(n' % {}
    except ValueError: pass
    else: raise TestFailed, "'%(n' % {} '' doesn't raise ValueError"

    try: '%*s' % ('abc')
    except TypeError: pass
    else: raise TestFailed, "'%*s' % ('abc') doesn't raise TypeError"

    try: '%*.*s' % ('abc', 5)
    except TypeError: pass
    else: raise TestFailed, "'%*.*s' % ('abc', 5) doesn't raise TypeError"

    try: '%s' % (1, 2)
    except TypeError: pass
    else: raise TestFailed, "'%s' % (1, 2) doesn't raise TypeError"

    try: '%' % None
    except ValueError: pass
    else: raise TestFailed, "'%' % None doesn't raise ValueError"

    vereq('534253'.isdigit(), 1)
    vereq('534253x'.isdigit(), 0)
    vereq('%c' % 5, '\x05')
    vereq('%c' % '5', '5')

def deepcopyrecursive():
    if verbose: print "Testing deepcopy of recursive objects..."
    class Node:
        pass
    a = Node()
    b = Node()
    a.b = b
    b.a = a
    z = deepcopy(a) # This blew up before

def modules():
    if verbose: print "Testing uninitialized module objects..."
    from types import ModuleType as M
    m = M.__new__(M)
    str(m)
    vereq(hasattr(m, "__name__"), 0)
    vereq(hasattr(m, "__file__"), 0)
    vereq(hasattr(m, "foo"), 0)
    vereq(m.__dict__, None)
    m.foo = 1
    vereq(m.__dict__, {"foo": 1})

def dictproxyiterkeys():
    class C(object):
        def meth(self):
            pass
    if verbose: print "Testing dict-proxy iterkeys..."
    keys = [ key for key in C.__dict__.iterkeys() ]
    keys.sort()
    vereq(keys, ['__dict__', '__doc__', '__module__', '__weakref__', 'meth'])

def dictproxyitervalues():
    class C(object):
        def meth(self):
            pass
    if verbose: print "Testing dict-proxy itervalues..."
    values = [ values for values in C.__dict__.itervalues() ]
    vereq(len(values), 5)

def dictproxyiteritems():
    class C(object):
        def meth(self):
            pass
    if verbose: print "Testing dict-proxy iteritems..."
    keys = [ key for (key, value) in C.__dict__.iteritems() ]
    keys.sort()
    vereq(keys, ['__dict__', '__doc__', '__module__', '__weakref__', 'meth'])

def funnynew():
    if verbose: print "Testing __new__ returning something unexpected..."
    class C(object):
        def __new__(cls, arg):
            if isinstance(arg, str): return [1, 2, 3]
            elif isinstance(arg, int): return object.__new__(D)
            else: return object.__new__(cls)
    class D(C):
        def __init__(self, arg):
            self.foo = arg
    vereq(C("1"), [1, 2, 3])
    vereq(D("1"), [1, 2, 3])
    d = D(None)
    veris(d.foo, None)
    d = C(1)
    vereq(isinstance(d, D), True)
    vereq(d.foo, 1)
    d = D(1)
    vereq(isinstance(d, D), True)
    vereq(d.foo, 1)

def imulbug():
    # SF bug 544647
    if verbose: print "Testing for __imul__ problems..."
    class C(object):
        def __imul__(self, other):
            return (self, other)
    x = C()
    y = x
    y *= 1.0
    vereq(y, (x, 1.0))
    y = x
    y *= 2
    vereq(y, (x, 2))
    y = x
    y *= 3L
    vereq(y, (x, 3L))
    y = x
    y *= 1L<<100
    vereq(y, (x, 1L<<100))
    y = x
    y *= None
    vereq(y, (x, None))
    y = x
    y *= "foo"
    vereq(y, (x, "foo"))

def docdescriptor():
    # SF bug 542984
    if verbose: print "Testing __doc__ descriptor..."
    class DocDescr(object):
        def __get__(self, object, otype):
            if object:
                object = object.__class__.__name__ + ' instance'
            if otype:
                otype = otype.__name__
            return 'object=%s; type=%s' % (object, otype)
    class OldClass:
        __doc__ = DocDescr()
    class NewClass(object):
        __doc__ = DocDescr()
    vereq(OldClass.__doc__, 'object=None; type=OldClass')
    vereq(OldClass().__doc__, 'object=OldClass instance; type=OldClass')
    vereq(NewClass.__doc__, 'object=None; type=NewClass')
    vereq(NewClass().__doc__, 'object=NewClass instance; type=NewClass')

def copy_setstate():
    if verbose:
        print "Testing that copy.*copy() correctly uses __setstate__..."
    import copy
    class C(object):
        def __init__(self, foo=None):
            self.foo = foo
            self.__foo = foo
        def setfoo(self, foo=None):
            self.foo = foo
        def getfoo(self):
            return self.__foo
        def __getstate__(self):
            return [self.foo]
        def __setstate__(self, lst):
            assert len(lst) == 1
            self.__foo = self.foo = lst[0]
    a = C(42)
    a.setfoo(24)
    vereq(a.foo, 24)
    vereq(a.getfoo(), 42)
    b = copy.copy(a)
    vereq(b.foo, 24)
    vereq(b.getfoo(), 24)
    b = copy.deepcopy(a)
    vereq(b.foo, 24)
    vereq(b.getfoo(), 24)

def slices():
    if verbose:
        print "Testing cases with slices and overridden __getitem__ ..."
    # Strings
    vereq("hello"[:4], "hell")
    vereq("hello"[slice(4)], "hell")
    vereq(str.__getitem__("hello", slice(4)), "hell")
    class S(str):
        def __getitem__(self, x):
            return str.__getitem__(self, x)
    vereq(S("hello")[:4], "hell")
    vereq(S("hello")[slice(4)], "hell")
    vereq(S("hello").__getitem__(slice(4)), "hell")
    # Tuples
    vereq((1,2,3)[:2], (1,2))
    vereq((1,2,3)[slice(2)], (1,2))
    vereq(tuple.__getitem__((1,2,3), slice(2)), (1,2))
    class T(tuple):
        def __getitem__(self, x):
            return tuple.__getitem__(self, x)
    vereq(T((1,2,3))[:2], (1,2))
    vereq(T((1,2,3))[slice(2)], (1,2))
    vereq(T((1,2,3)).__getitem__(slice(2)), (1,2))
    # Lists
    vereq([1,2,3][:2], [1,2])
    vereq([1,2,3][slice(2)], [1,2])
    vereq(list.__getitem__([1,2,3], slice(2)), [1,2])
    class L(list):
        def __getitem__(self, x):
            return list.__getitem__(self, x)
    vereq(L([1,2,3])[:2], [1,2])
    vereq(L([1,2,3])[slice(2)], [1,2])
    vereq(L([1,2,3]).__getitem__(slice(2)), [1,2])
    # Now do lists and __setitem__
    a = L([1,2,3])
    a[slice(1, 3)] = [3,2]
    vereq(a, [1,3,2])
    a[slice(0, 2, 1)] = [3,1]
    vereq(a, [3,1,2])
    a.__setitem__(slice(1, 3), [2,1])
    vereq(a, [3,2,1])
    a.__setitem__(slice(0, 2, 1), [2,3])
    vereq(a, [2,3,1])

def subtype_resurrection():
    if verbose:
        print "Testing resurrection of new-style instance..."

    class C(object):
        container = []

        def __del__(self):
            # resurrect the instance
            C.container.append(self)

    c = C()
    c.attr = 42
    # The most interesting thing here is whether this blows up, due to flawed
    #  GC tracking logic in typeobject.c's call_finalizer() (a 2.2.1 bug).
    del c

    # If that didn't blow up, it's also interesting to see whether clearing
    # the last container slot works:  that will attempt to delete c again,
    # which will cause c to get appended back to the container again "during"
    # the del.
    del C.container[-1]
    vereq(len(C.container), 1)
    vereq(C.container[-1].attr, 42)

    # Make c mortal again, so that the test framework with -l doesn't report
    # it as a leak.
    del C.__del__

def slottrash():
    # Deallocating deeply nested slotted trash caused stack overflows
    if verbose:
        print "Testing slot trash..."
    class trash(object):
        __slots__ = ['x']
        def __init__(self, x):
            self.x = x
    o = None
    for i in xrange(50000):
        o = trash(o)
    del o

def slotmultipleinheritance():
    # SF bug 575229, multiple inheritance w/ slots dumps core
    class A(object):
        __slots__=()
    class B(object):
        pass
    class C(A,B) :
        __slots__=()
    vereq(C.__basicsize__, B.__basicsize__)
    verify(hasattr(C, '__dict__'))
    verify(hasattr(C, '__weakref__'))
    C().x = 2

def testrmul():
    # SF patch 592646
    if verbose:
        print "Testing correct invocation of __rmul__..."
    class C(object):
        def __mul__(self, other):
            return "mul"
        def __rmul__(self, other):
            return "rmul"
    a = C()
    vereq(a*2, "mul")
    vereq(a*2.2, "mul")
    vereq(2*a, "rmul")
    vereq(2.2*a, "rmul")

def testipow():
    # [SF bug 620179]
    if verbose:
        print "Testing correct invocation of __ipow__..."
    class C(object):
        def __ipow__(self, other):
            pass
    a = C()
    a **= 2

def do_this_first():
    if verbose:
        print "Testing SF bug 551412 ..."
    # This dumps core when SF bug 551412 isn't fixed --
    # but only when test_descr.py is run separately.
    # (That can't be helped -- as soon as PyType_Ready()
    # is called for PyLong_Type, the bug is gone.)
    class UserLong(object):
        def __pow__(self, *args):
            pass
    try:
        pow(0L, UserLong(), 0L)
    except:
        pass

    if verbose:
        print "Testing SF bug 570483..."
    # Another segfault only when run early
    # (before PyType_Ready(tuple) is called)
    type.mro(tuple)

def test_mutable_bases():
    if verbose:
        print "Testing mutable bases..."
    # stuff that should work:
    class C(object):
        pass
    class C2(object):
        def __getattribute__(self, attr):
            if attr == 'a':
                return 2
            else:
                return super(C2, self).__getattribute__(attr)
        def meth(self):
            return 1
    class D(C):
        pass
    class E(D):
        pass
    d = D()
    e = E()
    D.__bases__ = (C,)
    D.__bases__ = (C2,)
    vereq(d.meth(), 1)
    vereq(e.meth(), 1)
    vereq(d.a, 2)
    vereq(e.a, 2)
    vereq(C2.__subclasses__(), [D])

    # stuff that shouldn't:
    class L(list):
        pass

    try:
        L.__bases__ = (dict,)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't turn list subclass into dict subclass"

    try:
        list.__bases__ = (dict,)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't be able to assign to list.__bases__"

    try:
        del D.__bases__
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't be able to delete .__bases__"

    try:
        D.__bases__ = ()
    except TypeError, msg:
        if str(msg) == "a new-style class can't have only classic bases":
            raise TestFailed, "wrong error message for .__bases__ = ()"
    else:
        raise TestFailed, "shouldn't be able to set .__bases__ to ()"

    try:
        D.__bases__ = (D,)
    except TypeError:
        pass
    else:
        # actually, we'll have crashed by here...
        raise TestFailed, "shouldn't be able to create inheritance cycles"

    try:
        D.__bases__ = (C, C)
    except TypeError:
        pass
    else:
        raise TestFailed, "didn't detect repeated base classes"

    try:
        D.__bases__ = (E,)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't be able to create inheritance cycles"

    # let's throw a classic class into the mix:
    class Classic:
        def meth2(self):
            return 3

    D.__bases__ = (C, Classic)

    vereq(d.meth2(), 3)
    vereq(e.meth2(), 3)
    try:
        d.a
    except AttributeError:
        pass
    else:
        raise TestFailed, "attribute should have vanished"

    try:
        D.__bases__ = (Classic,)
    except TypeError:
        pass
    else:
        raise TestFailed, "new-style class must have a new-style base"

def test_mutable_bases_with_failing_mro():
    if verbose:
        print "Testing mutable bases with failing mro..."
    class WorkOnce(type):
        def __new__(self, name, bases, ns):
            self.flag = 0
            return super(WorkOnce, self).__new__(WorkOnce, name, bases, ns)
        def mro(self):
            if self.flag > 0:
                raise RuntimeError, "bozo"
            else:
                self.flag += 1
                return type.mro(self)

    class WorkAlways(type):
        def mro(self):
            # this is here to make sure that .mro()s aren't called
            # with an exception set (which was possible at one point).
            # An error message will be printed in a debug build.
            # What's a good way to test for this?
            return type.mro(self)

    class C(object):
        pass

    class C2(object):
        pass

    class D(C):
        pass

    class E(D):
        pass

    class F(D):
        __metaclass__ = WorkOnce

    class G(D):
        __metaclass__ = WorkAlways

    # Immediate subclasses have their mro's adjusted in alphabetical
    # order, so E's will get adjusted before adjusting F's fails.  We
    # check here that E's gets restored.

    E_mro_before = E.__mro__
    D_mro_before = D.__mro__

    try:
        D.__bases__ = (C2,)
    except RuntimeError:
        vereq(E.__mro__, E_mro_before)
        vereq(D.__mro__, D_mro_before)
    else:
        raise TestFailed, "exception not propagated"

def test_mutable_bases_catch_mro_conflict():
    if verbose:
        print "Testing mutable bases catch mro conflict..."
    class A(object):
        pass

    class B(object):
        pass

    class C(A, B):
        pass

    class D(A, B):
        pass

    class E(C, D):
        pass

    try:
        C.__bases__ = (B, A)
    except TypeError:
        pass
    else:
        raise TestFailed, "didn't catch MRO conflict"

def mutable_names():
    if verbose:
        print "Testing mutable names..."
    class C(object):
        pass

    # C.__module__ could be 'test_descr' or '__main__'
    mod = C.__module__

    C.__name__ = 'D'
    vereq((C.__module__, C.__name__), (mod, 'D'))

    C.__name__ = 'D.E'
    vereq((C.__module__, C.__name__), (mod, 'D.E'))

def subclass_right_op():
    if verbose:
        print "Testing correct dispatch of subclass overloading __r__..."

    # This code tests various cases where right-dispatch of a subclass
    # should be preferred over left-dispatch of a base class.

    # Case 1: subclass of int; this tests code in abstract.c::binary_op1()

    class B(int):
        def __floordiv__(self, other):
            return "B.__floordiv__"
        def __rfloordiv__(self, other):
            return "B.__rfloordiv__"

    vereq(B(1) // 1, "B.__floordiv__")
    vereq(1 // B(1), "B.__rfloordiv__")

    # Case 2: subclass of object; this is just the baseline for case 3

    class C(object):
        def __floordiv__(self, other):
            return "C.__floordiv__"
        def __rfloordiv__(self, other):
            return "C.__rfloordiv__"

    vereq(C() // 1, "C.__floordiv__")
    vereq(1 // C(), "C.__rfloordiv__")

    # Case 3: subclass of new-style class; here it gets interesting

    class D(C):
        def __floordiv__(self, other):
            return "D.__floordiv__"
        def __rfloordiv__(self, other):
            return "D.__rfloordiv__"

    vereq(D() // C(), "D.__floordiv__")
    vereq(C() // D(), "D.__rfloordiv__")

    # Case 4: this didn't work right in 2.2.2 and 2.3a1

    class E(C):
        pass

    vereq(E.__rfloordiv__, C.__rfloordiv__)

    vereq(E() // 1, "C.__floordiv__")
    vereq(1 // E(), "C.__rfloordiv__")
    vereq(E() // C(), "C.__floordiv__")
    vereq(C() // E(), "C.__floordiv__") # This one would fail

def dict_type_with_metaclass():
    if verbose:
        print "Testing type of __dict__ when __metaclass__ set..."

    class B(object):
        pass
    class M(type):
        pass
    class C:
        # In 2.3a1, C.__dict__ was a real dict rather than a dict proxy
        __metaclass__ = M
    veris(type(C.__dict__), type(B.__dict__))

def meth_class_get():
    # Full coverage of descrobject.c::classmethod_get()
    if verbose:
        print "Testing __get__ method of METH_CLASS C methods..."
    # Baseline
    arg = [1, 2, 3]
    res = {1: None, 2: None, 3: None}
    vereq(dict.fromkeys(arg), res)
    vereq({}.fromkeys(arg), res)
    # Now get the descriptor
    descr = dict.__dict__["fromkeys"]
    # More baseline using the descriptor directly
    vereq(descr.__get__(None, dict)(arg), res)
    vereq(descr.__get__({})(arg), res)
    # Now check various error cases
    try:
        descr.__get__(None, None)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't have allowed descr.__get__(None, None)"
    try:
        descr.__get__(42)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't have allowed descr.__get__(42)"
    try:
        descr.__get__(None, 42)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't have allowed descr.__get__(None, 42)"
    try:
        descr.__get__(None, int)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't have allowed descr.__get__(None, int)"

def isinst_isclass():
    if verbose:
        print "Testing proxy isinstance() and isclass()..."
    class Proxy(object):
        def __init__(self, obj):
            self.__obj = obj
        def __getattribute__(self, name):
            if name.startswith("_Proxy__"):
                return object.__getattribute__(self, name)
            else:
                return getattr(self.__obj, name)
    # Test with a classic class
    class C:
        pass
    a = C()
    pa = Proxy(a)
    verify(isinstance(a, C))  # Baseline
    verify(isinstance(pa, C)) # Test
    # Test with a classic subclass
    class D(C):
        pass
    a = D()
    pa = Proxy(a)
    verify(isinstance(a, C))  # Baseline
    verify(isinstance(pa, C)) # Test
    # Test with a new-style class
    class C(object):
        pass
    a = C()
    pa = Proxy(a)
    verify(isinstance(a, C))  # Baseline
    verify(isinstance(pa, C)) # Test
    # Test with a new-style subclass
    class D(C):
        pass
    a = D()
    pa = Proxy(a)
    verify(isinstance(a, C))  # Baseline
    verify(isinstance(pa, C)) # Test

def proxysuper():
    if verbose:
        print "Testing super() for a proxy object..."
    class Proxy(object):
        def __init__(self, obj):
            self.__obj = obj
        def __getattribute__(self, name):
            if name.startswith("_Proxy__"):
                return object.__getattribute__(self, name)
            else:
                return getattr(self.__obj, name)

    class B(object):
        def f(self):
            return "B.f"

    class C(B):
        def f(self):
            return super(C, self).f() + "->C.f"

    obj = C()
    p = Proxy(obj)
    vereq(C.__dict__["f"](p), "B.f->C.f")

def carloverre():
    if verbose:
        print "Testing prohibition of Carlo Verre's hack..."
    try:
        object.__setattr__(str, "foo", 42)
    except TypeError:
        pass
    else:
        raise TestFailed, "Carlo Verre __setattr__ suceeded!"
    try:
        object.__delattr__(str, "lower")
    except TypeError:
        pass
    else:
        raise TestFailed, "Carlo Verre __delattr__ succeeded!"

def weakref_segfault():
    # SF 742911
    if verbose:
        print "Testing weakref segfault..."

    import weakref

    class Provoker:
        def __init__(self, referrent):
            self.ref = weakref.ref(referrent)

        def __del__(self):
            x = self.ref()

    class Oops(object):
        pass

    o = Oops()
    o.whatever = Provoker(o)
    del o

def wrapper_segfault():
    # SF 927248: deeply nested wrappers could cause stack overflow
    f = lambda:None
    for i in xrange(1000000):
        f = f.__call__
    f = None

# Fix SF #762455, segfault when sys.stdout is changed in getattr
def filefault():
    if verbose:
        print "Testing sys.stdout is changed in getattr..."
    import sys
    class StdoutGuard:
        def __getattr__(self, attr):
            sys.stdout = sys.__stdout__
            raise RuntimeError("Premature access to sys.stdout.%s" % attr)
    sys.stdout = StdoutGuard()
    try:
        print "Oops!"
    except RuntimeError:
        pass

def vicious_descriptor_nonsense():
    # A potential segfault spotted by Thomas Wouters in mail to
    # python-dev 2003-04-17, turned into an example & fixed by Michael
    # Hudson just less than four months later...
    if verbose:
        print "Testing vicious_descriptor_nonsense..."

    class Evil(object):
        def __hash__(self):
            return hash('attr')
        def __eq__(self, other):
            del C.attr
            return 0

    class Descr(object):
        def __get__(self, ob, type=None):
            return 1

    class C(object):
        attr = Descr()

    c = C()
    c.__dict__[Evil()] = 0

    vereq(c.attr, 1)
    # this makes a crash more likely:
    import gc; gc.collect()
    vereq(hasattr(c, 'attr'), False)

def test_init():
    # SF 1155938
    class Foo(object):
        def __init__(self):
            return 10
    try:
        Foo()
    except TypeError:
        pass
    else:
        raise TestFailed, "did not test __init__() for None return"

def methodwrapper():
    #  did not support any reflection before 2.5
    if verbose:
        print "Testing method-wrapper objects..."

    l = []
    vereq(l.__add__, l.__add__)
    vereq(l.__add__, [].__add__)
    verify(l.__add__ != [5].__add__)
    verify(l.__add__ != l.__mul__)
    verify(l.__add__.__name__ == '__add__')
    verify(l.__add__.__self__ is l)
    verify(l.__add__.__objclass__ is list)
    vereq(l.__add__.__doc__, list.__add__.__doc__)
    try:
        hash(l.__add__)
    except TypeError:
        pass
    else:
        raise TestFailed("no TypeError from hash([].__add__)")

    t = ()
    t += (7,)
    vereq(t.__add__, (7,).__add__)
    vereq(hash(t.__add__), hash((7,).__add__))

def test_getattr_hooks():
    # issue 4230
    class Descriptor(object):
        counter = 0
        def __get__(self, obj, objtype=None):
            def getter(name):
                self.counter += 1
                raise AttributeError(name)
            return getter

    descr = Descriptor()
    class A(object):
        __getattribute__ = descr
    class B(object):
        __getattr__ = descr
    class C(object):
        __getattribute__ = descr
        __getattr__ = descr

    raises(AttributeError, "attr", getattr, A(), "attr")
    vereq(descr.counter, 1)
    raises(AttributeError, "attr", getattr, B(), "attr")
    vereq(descr.counter, 2)
    raises(AttributeError, "attr", getattr, C(), "attr")
    vereq(descr.counter, 4)

    import gc
    class EvilGetattribute(object):
        # This used to segfault
        def __getattr__(self, name):
            raise AttributeError(name)
        def __getattribute__(self, name):
            del EvilGetattribute.__getattr__
            for i in range(5):
                gc.collect()
            raise AttributeError(name)

    raises(AttributeError, "attr", getattr, EvilGetattribute(), "attr")

def notimplemented():
    # all binary methods should be able to return a NotImplemented
    if verbose:
        print "Testing NotImplemented..."

    import sys
    import types
    import operator

    def specialmethod(self, other):
        return NotImplemented

    def check(expr, x, y):
        try:
            exec expr in {'x': x, 'y': y, 'operator': operator}
        except TypeError:
            pass
        else:
            raise TestFailed("no TypeError from %r" % (expr,))

    N1 = sys.maxint + 1L    # might trigger OverflowErrors instead of TypeErrors
    N2 = sys.maxint         # if sizeof(int) < sizeof(long), might trigger
                            #   ValueErrors instead of TypeErrors
    for metaclass in [type, types.ClassType]:
        for name, expr, iexpr in [
                ('__add__',      'x + y',                   'x += y'),
                ('__sub__',      'x - y',                   'x -= y'),
                ('__mul__',      'x * y',                   'x *= y'),
                ('__truediv__',  'operator.truediv(x, y)',  None),
                ('__floordiv__', 'operator.floordiv(x, y)', None),
                ('__div__',      'x / y',                   'x /= y'),
                ('__mod__',      'x % y',                   'x %= y'),
                ('__divmod__',   'divmod(x, y)',            None),
                ('__pow__',      'x ** y',                  'x **= y'),
                ('__lshift__',   'x << y',                  'x <<= y'),
                ('__rshift__',   'x >> y',                  'x >>= y'),
                ('__and__',      'x & y',                   'x &= y'),
                ('__or__',       'x | y',                   'x |= y'),
                ('__xor__',      'x ^ y',                   'x ^= y'),
                ('__coerce__',   'coerce(x, y)',            None)]:
            if name == '__coerce__':
                rname = name
            else:
                rname = '__r' + name[2:]
            A = metaclass('A', (), {name: specialmethod})
            B = metaclass('B', (), {rname: specialmethod})
            a = A()
            b = B()
            check(expr, a, a)
            check(expr, a, b)
            check(expr, b, a)
            check(expr, b, b)
            check(expr, a, N1)
            check(expr, a, N2)
            check(expr, N1, b)
            check(expr, N2, b)
            if iexpr:
                check(iexpr, a, a)
                check(iexpr, a, b)
                check(iexpr, b, a)
                check(iexpr, b, b)
                check(iexpr, a, N1)
                check(iexpr, a, N2)
                iname = '__i' + name[2:]
                C = metaclass('C', (), {iname: specialmethod})
                c = C()
                check(iexpr, c, a)
                check(iexpr, c, b)
                check(iexpr, c, N1)
                check(iexpr, c, N2)

def test_assign_slice():
    # ceval.c's assign_slice used to check for
    # tp->tp_as_sequence->sq_slice instead of
    # tp->tp_as_sequence->sq_ass_slice

    class C(object):
        def __setslice__(self, start, stop, value):
            self.value = value

    c = C()
    c[1:2] = 3
    vereq(c.value, 3)

def test_main():
    weakref_segfault() # Must be first, somehow
    wrapper_segfault()
    do_this_first()
    class_docstrings()
    lists()
    dicts()
    dict_constructor()
    test_dir()
    ints()
    longs()
    floats()
    complexes()
    spamlists()
    spamdicts()
    pydicts()
    pylists()
    metaclass()
    pymods()
    multi()
    mro_disagreement()
    diamond()
    ex5()
    monotonicity()
    consistency_with_epg()
    objects()
    slots()
    slotspecials()
    dynamics()
    errors()
    classmethods()
    classmethods_in_c()
    staticmethods()
    staticmethods_in_c()
    classic()
    compattr()
    newslot()
    altmro()
    overloading()
    methods()
    specials()
    weakrefs()
    properties()
    supers()
    inherits()
    keywords()
    restricted()
    str_subclass_as_dict_key()
    classic_comparisons()
    rich_comparisons()
    coercions()
    descrdoc()
    setclass()
    setdict()
    pickles()
    copies()
    binopoverride()
    subclasspropagation()
    buffer_inherit()
    str_of_str_subclass()
    kwdargs()
    recursive__call__()
    delhook()
    hashinherit()
    strops()
    deepcopyrecursive()
    modules()
    dictproxyiterkeys()
    dictproxyitervalues()
    dictproxyiteritems()
    pickleslots()
    funnynew()
    imulbug()
    docdescriptor()
    copy_setstate()
    slices()
    subtype_resurrection()
    slottrash()
    slotmultipleinheritance()
    testrmul()
    testipow()
    test_mutable_bases()
    test_mutable_bases_with_failing_mro()
    test_mutable_bases_catch_mro_conflict()
    mutable_names()
    subclass_right_op()
    dict_type_with_metaclass()
    meth_class_get()
    isinst_isclass()
    proxysuper()
    carloverre()
    filefault()
    vicious_descriptor_nonsense()
    test_init()
    methodwrapper()
    notimplemented()
    test_assign_slice()
    test_getattr_hooks()

    if verbose: print "All OK"

if __name__ == "__main__":
    test_main()




© 2015 - 2024 Weber Informatics LLC | Privacy Policy