Lib.test.test_math.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython Show documentation
Show all versions of jython Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
# Python test set -- math module
# XXXX Should not do tests around zero only
from test.test_support import run_unittest, verbose
import unittest
import math
import os
import sys
import random
import struct
eps = 1E-05
NAN = float('nan')
INF = float('inf')
NINF = float('-inf')
# decorator for skipping tests on non-IEEE 754 platforms
requires_IEEE_754 = unittest.skipUnless(
float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles")
# detect evidence of double-rounding: fsum is not always correctly
# rounded on machines that suffer from double rounding.
x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer
HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4)
# locate file with test values
if __name__ == '__main__':
file = sys.argv[0]
else:
file = __file__
test_dir = os.path.dirname(file) or os.curdir
math_testcases = os.path.join(test_dir, 'math_testcases.txt')
test_file = os.path.join(test_dir, 'cmath_testcases.txt')
def to_ulps(x):
"""Convert a non-NaN float x to an integer, in such a way that
adjacent floats are converted to adjacent integers. Then
abs(ulps(x) - ulps(y)) gives the difference in ulps between two
floats.
The results from this function will only make sense on platforms
where C doubles are represented in IEEE 754 binary64 format.
"""
n = struct.unpack(' expected [flag]*
"""
with open(fname) as fp:
for line in fp:
# strip comments, and skip blank lines
if '--' in line:
line = line[:line.index('--')]
if not line.strip():
continue
lhs, rhs = line.split('->')
id, fn, arg = lhs.split()
rhs_pieces = rhs.split()
exp = rhs_pieces[0]
flags = rhs_pieces[1:]
yield (id, fn, float(arg), float(exp), flags)
def parse_testfile(fname):
"""Parse a file with test values
Empty lines or lines starting with -- are ignored
yields id, fn, arg_real, arg_imag, exp_real, exp_imag
"""
with open(fname) as fp:
for line in fp:
# skip comment lines and blank lines
if line.startswith('--') or not line.strip():
continue
lhs, rhs = line.split('->')
id, fn, arg_real, arg_imag = lhs.split()
rhs_pieces = rhs.split()
exp_real, exp_imag = rhs_pieces[0], rhs_pieces[1]
flags = rhs_pieces[2:]
yield (id, fn,
float(arg_real), float(arg_imag),
float(exp_real), float(exp_imag),
flags
)
class MathTests(unittest.TestCase):
def ftest(self, name, value, expected):
if abs(value-expected) > eps:
# Use %r instead of %f so the error message
# displays full precision. Otherwise discrepancies
# in the last few bits will lead to very confusing
# error messages
self.fail('%s returned %r, expected %r' %
(name, value, expected))
def testConstants(self):
self.ftest('pi', math.pi, 3.1415926)
self.ftest('e', math.e, 2.7182818)
def testAcos(self):
self.assertRaises(TypeError, math.acos)
self.ftest('acos(-1)', math.acos(-1), math.pi)
self.ftest('acos(0)', math.acos(0), math.pi/2)
self.ftest('acos(1)', math.acos(1), 0)
self.assertRaises(ValueError, math.acos, INF)
self.assertRaises(ValueError, math.acos, NINF)
self.assertTrue(math.isnan(math.acos(NAN)))
def testAcosh(self):
self.assertRaises(TypeError, math.acosh)
self.ftest('acosh(1)', math.acosh(1), 0)
self.ftest('acosh(2)', math.acosh(2), 1.3169578969248168)
self.assertRaises(ValueError, math.acosh, 0)
self.assertRaises(ValueError, math.acosh, -1)
self.assertEqual(math.acosh(INF), INF)
self.assertRaises(ValueError, math.acosh, NINF)
self.assertTrue(math.isnan(math.acosh(NAN)))
def testAsin(self):
self.assertRaises(TypeError, math.asin)
self.ftest('asin(-1)', math.asin(-1), -math.pi/2)
self.ftest('asin(0)', math.asin(0), 0)
self.ftest('asin(1)', math.asin(1), math.pi/2)
self.assertRaises(ValueError, math.asin, INF)
self.assertRaises(ValueError, math.asin, NINF)
self.assertTrue(math.isnan(math.asin(NAN)))
def testAsinh(self):
self.assertRaises(TypeError, math.asinh)
self.ftest('asinh(0)', math.asinh(0), 0)
self.ftest('asinh(1)', math.asinh(1), 0.88137358701954305)
self.ftest('asinh(-1)', math.asinh(-1), -0.88137358701954305)
self.assertEqual(math.asinh(INF), INF)
self.assertEqual(math.asinh(NINF), NINF)
self.assertTrue(math.isnan(math.asinh(NAN)))
def testAtan(self):
self.assertRaises(TypeError, math.atan)
self.ftest('atan(-1)', math.atan(-1), -math.pi/4)
self.ftest('atan(0)', math.atan(0), 0)
self.ftest('atan(1)', math.atan(1), math.pi/4)
self.ftest('atan(inf)', math.atan(INF), math.pi/2)
self.ftest('atan(-inf)', math.atan(NINF), -math.pi/2)
self.assertTrue(math.isnan(math.atan(NAN)))
def testAtanh(self):
self.assertRaises(TypeError, math.atan)
self.ftest('atanh(0)', math.atanh(0), 0)
self.ftest('atanh(0.5)', math.atanh(0.5), 0.54930614433405489)
self.ftest('atanh(-0.5)', math.atanh(-0.5), -0.54930614433405489)
self.assertRaises(ValueError, math.atanh, 1)
self.assertRaises(ValueError, math.atanh, -1)
self.assertRaises(ValueError, math.atanh, INF)
self.assertRaises(ValueError, math.atanh, NINF)
self.assertTrue(math.isnan(math.atanh(NAN)))
def testAtan2(self):
self.assertRaises(TypeError, math.atan2)
self.ftest('atan2(-1, 0)', math.atan2(-1, 0), -math.pi/2)
self.ftest('atan2(-1, 1)', math.atan2(-1, 1), -math.pi/4)
self.ftest('atan2(0, 1)', math.atan2(0, 1), 0)
self.ftest('atan2(1, 1)', math.atan2(1, 1), math.pi/4)
self.ftest('atan2(1, 0)', math.atan2(1, 0), math.pi/2)
# math.atan2(0, x)
self.ftest('atan2(0., -inf)', math.atan2(0., NINF), math.pi)
self.ftest('atan2(0., -2.3)', math.atan2(0., -2.3), math.pi)
self.ftest('atan2(0., -0.)', math.atan2(0., -0.), math.pi)
self.assertEqual(math.atan2(0., 0.), 0.)
self.assertEqual(math.atan2(0., 2.3), 0.)
self.assertEqual(math.atan2(0., INF), 0.)
self.assertTrue(math.isnan(math.atan2(0., NAN)))
# math.atan2(-0, x)
self.ftest('atan2(-0., -inf)', math.atan2(-0., NINF), -math.pi)
self.ftest('atan2(-0., -2.3)', math.atan2(-0., -2.3), -math.pi)
self.ftest('atan2(-0., -0.)', math.atan2(-0., -0.), -math.pi)
self.assertEqual(math.atan2(-0., 0.), -0.)
self.assertEqual(math.atan2(-0., 2.3), -0.)
self.assertEqual(math.atan2(-0., INF), -0.)
self.assertTrue(math.isnan(math.atan2(-0., NAN)))
# math.atan2(INF, x)
self.ftest('atan2(inf, -inf)', math.atan2(INF, NINF), math.pi*3/4)
self.ftest('atan2(inf, -2.3)', math.atan2(INF, -2.3), math.pi/2)
self.ftest('atan2(inf, -0.)', math.atan2(INF, -0.0), math.pi/2)
self.ftest('atan2(inf, 0.)', math.atan2(INF, 0.0), math.pi/2)
self.ftest('atan2(inf, 2.3)', math.atan2(INF, 2.3), math.pi/2)
self.ftest('atan2(inf, inf)', math.atan2(INF, INF), math.pi/4)
self.assertTrue(math.isnan(math.atan2(INF, NAN)))
# math.atan2(NINF, x)
self.ftest('atan2(-inf, -inf)', math.atan2(NINF, NINF), -math.pi*3/4)
self.ftest('atan2(-inf, -2.3)', math.atan2(NINF, -2.3), -math.pi/2)
self.ftest('atan2(-inf, -0.)', math.atan2(NINF, -0.0), -math.pi/2)
self.ftest('atan2(-inf, 0.)', math.atan2(NINF, 0.0), -math.pi/2)
self.ftest('atan2(-inf, 2.3)', math.atan2(NINF, 2.3), -math.pi/2)
self.ftest('atan2(-inf, inf)', math.atan2(NINF, INF), -math.pi/4)
self.assertTrue(math.isnan(math.atan2(NINF, NAN)))
# math.atan2(+finite, x)
self.ftest('atan2(2.3, -inf)', math.atan2(2.3, NINF), math.pi)
self.ftest('atan2(2.3, -0.)', math.atan2(2.3, -0.), math.pi/2)
self.ftest('atan2(2.3, 0.)', math.atan2(2.3, 0.), math.pi/2)
self.assertEqual(math.atan2(2.3, INF), 0.)
self.assertTrue(math.isnan(math.atan2(2.3, NAN)))
# math.atan2(-finite, x)
self.ftest('atan2(-2.3, -inf)', math.atan2(-2.3, NINF), -math.pi)
self.ftest('atan2(-2.3, -0.)', math.atan2(-2.3, -0.), -math.pi/2)
self.ftest('atan2(-2.3, 0.)', math.atan2(-2.3, 0.), -math.pi/2)
self.assertEqual(math.atan2(-2.3, INF), -0.)
self.assertTrue(math.isnan(math.atan2(-2.3, NAN)))
# math.atan2(NAN, x)
self.assertTrue(math.isnan(math.atan2(NAN, NINF)))
self.assertTrue(math.isnan(math.atan2(NAN, -2.3)))
self.assertTrue(math.isnan(math.atan2(NAN, -0.)))
self.assertTrue(math.isnan(math.atan2(NAN, 0.)))
self.assertTrue(math.isnan(math.atan2(NAN, 2.3)))
self.assertTrue(math.isnan(math.atan2(NAN, INF)))
self.assertTrue(math.isnan(math.atan2(NAN, NAN)))
def testCeil(self):
self.assertRaises(TypeError, math.ceil)
# These types will be int in py3k.
self.assertEqual(float, type(math.ceil(1)))
self.assertEqual(float, type(math.ceil(1L)))
self.assertEqual(float, type(math.ceil(1.0)))
self.ftest('ceil(0.5)', math.ceil(0.5), 1)
self.ftest('ceil(1.0)', math.ceil(1.0), 1)
self.ftest('ceil(1.5)', math.ceil(1.5), 2)
self.ftest('ceil(-0.5)', math.ceil(-0.5), 0)
self.ftest('ceil(-1.0)', math.ceil(-1.0), -1)
self.ftest('ceil(-1.5)', math.ceil(-1.5), -1)
self.assertEqual(math.ceil(INF), INF)
self.assertEqual(math.ceil(NINF), NINF)
self.assertTrue(math.isnan(math.ceil(NAN)))
class TestCeil(object):
def __float__(self):
return 41.3
class TestNoCeil(object):
pass
self.ftest('ceil(TestCeil())', math.ceil(TestCeil()), 42)
self.assertRaises(TypeError, math.ceil, TestNoCeil())
t = TestNoCeil()
t.__ceil__ = lambda *args: args
self.assertRaises(TypeError, math.ceil, t)
self.assertRaises(TypeError, math.ceil, t, 0)
@requires_IEEE_754
def testCopysign(self):
self.assertEqual(math.copysign(1, 42), 1.0)
self.assertEqual(math.copysign(0., 42), 0.0)
self.assertEqual(math.copysign(1., -42), -1.0)
self.assertEqual(math.copysign(3, 0.), 3.0)
self.assertEqual(math.copysign(4., -0.), -4.0)
self.assertRaises(TypeError, math.copysign)
# copysign should let us distinguish signs of zeros
self.assertEqual(math.copysign(1., 0.), 1.)
self.assertEqual(math.copysign(1., -0.), -1.)
self.assertEqual(math.copysign(INF, 0.), INF)
self.assertEqual(math.copysign(INF, -0.), NINF)
self.assertEqual(math.copysign(NINF, 0.), INF)
self.assertEqual(math.copysign(NINF, -0.), NINF)
# and of infinities
self.assertEqual(math.copysign(1., INF), 1.)
self.assertEqual(math.copysign(1., NINF), -1.)
self.assertEqual(math.copysign(INF, INF), INF)
self.assertEqual(math.copysign(INF, NINF), NINF)
self.assertEqual(math.copysign(NINF, INF), INF)
self.assertEqual(math.copysign(NINF, NINF), NINF)
self.assertTrue(math.isnan(math.copysign(NAN, 1.)))
self.assertTrue(math.isnan(math.copysign(NAN, INF)))
self.assertTrue(math.isnan(math.copysign(NAN, NINF)))
self.assertTrue(math.isnan(math.copysign(NAN, NAN)))
# copysign(INF, NAN) may be INF or it may be NINF, since
# we don't know whether the sign bit of NAN is set on any
# given platform.
self.assertTrue(math.isinf(math.copysign(INF, NAN)))
# similarly, copysign(2., NAN) could be 2. or -2.
self.assertEqual(abs(math.copysign(2., NAN)), 2.)
def testCos(self):
self.assertRaises(TypeError, math.cos)
self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0)
self.ftest('cos(0)', math.cos(0), 1)
self.ftest('cos(pi/2)', math.cos(math.pi/2), 0)
self.ftest('cos(pi)', math.cos(math.pi), -1)
try:
self.assertTrue(math.isnan(math.cos(INF)))
self.assertTrue(math.isnan(math.cos(NINF)))
except ValueError:
self.assertRaises(ValueError, math.cos, INF)
self.assertRaises(ValueError, math.cos, NINF)
self.assertTrue(math.isnan(math.cos(NAN)))
def testCosh(self):
self.assertRaises(TypeError, math.cosh)
self.ftest('cosh(0)', math.cosh(0), 1)
self.ftest('cosh(2)-2*cosh(1)**2', math.cosh(2)-2*math.cosh(1)**2, -1) # Thanks to Lambert
self.assertEqual(math.cosh(INF), INF)
self.assertEqual(math.cosh(NINF), INF)
self.assertTrue(math.isnan(math.cosh(NAN)))
def testDegrees(self):
self.assertRaises(TypeError, math.degrees)
self.ftest('degrees(pi)', math.degrees(math.pi), 180.0)
self.ftest('degrees(pi/2)', math.degrees(math.pi/2), 90.0)
self.ftest('degrees(-pi/4)', math.degrees(-math.pi/4), -45.0)
def testExp(self):
self.assertRaises(TypeError, math.exp)
self.ftest('exp(-1)', math.exp(-1), 1/math.e)
self.ftest('exp(0)', math.exp(0), 1)
self.ftest('exp(1)', math.exp(1), math.e)
self.assertEqual(math.exp(INF), INF)
self.assertEqual(math.exp(NINF), 0.)
self.assertTrue(math.isnan(math.exp(NAN)))
def testFabs(self):
self.assertRaises(TypeError, math.fabs)
self.ftest('fabs(-1)', math.fabs(-1), 1)
self.ftest('fabs(0)', math.fabs(0), 0)
self.ftest('fabs(1)', math.fabs(1), 1)
def testFactorial(self):
def fact(n):
result = 1
for i in range(1, int(n)+1):
result *= i
return result
values = range(10) + [50, 100, 500]
random.shuffle(values)
for x in values:
for cast in (int, long, float):
self.assertEqual(math.factorial(cast(x)), fact(x), (x, fact(x), math.factorial(x)))
self.assertRaises(ValueError, math.factorial, -1)
self.assertRaises(ValueError, math.factorial, math.pi)
def testFloor(self):
self.assertRaises(TypeError, math.floor)
# These types will be int in py3k.
self.assertEqual(float, type(math.floor(1)))
self.assertEqual(float, type(math.floor(1L)))
self.assertEqual(float, type(math.floor(1.0)))
self.ftest('floor(0.5)', math.floor(0.5), 0)
self.ftest('floor(1.0)', math.floor(1.0), 1)
self.ftest('floor(1.5)', math.floor(1.5), 1)
self.ftest('floor(-0.5)', math.floor(-0.5), -1)
self.ftest('floor(-1.0)', math.floor(-1.0), -1)
self.ftest('floor(-1.5)', math.floor(-1.5), -2)
# pow() relies on floor() to check for integers
# This fails on some platforms - so check it here
self.ftest('floor(1.23e167)', math.floor(1.23e167), 1.23e167)
self.ftest('floor(-1.23e167)', math.floor(-1.23e167), -1.23e167)
self.assertEqual(math.ceil(INF), INF)
self.assertEqual(math.ceil(NINF), NINF)
self.assertTrue(math.isnan(math.floor(NAN)))
class TestFloor(object):
def __float__(self):
return 42.3
class TestNoFloor(object):
pass
self.ftest('floor(TestFloor())', math.floor(TestFloor()), 42)
self.assertRaises(TypeError, math.floor, TestNoFloor())
t = TestNoFloor()
t.__floor__ = lambda *args: args
self.assertRaises(TypeError, math.floor, t)
self.assertRaises(TypeError, math.floor, t, 0)
def testFmod(self):
self.assertRaises(TypeError, math.fmod)
self.ftest('fmod(10,1)', math.fmod(10,1), 0)
self.ftest('fmod(10,0.5)', math.fmod(10,0.5), 0)
self.ftest('fmod(10,1.5)', math.fmod(10,1.5), 1)
self.ftest('fmod(-10,1)', math.fmod(-10,1), 0)
self.ftest('fmod(-10,0.5)', math.fmod(-10,0.5), 0)
self.ftest('fmod(-10,1.5)', math.fmod(-10,1.5), -1)
self.assertTrue(math.isnan(math.fmod(NAN, 1.)))
self.assertTrue(math.isnan(math.fmod(1., NAN)))
self.assertTrue(math.isnan(math.fmod(NAN, NAN)))
self.assertRaises(ValueError, math.fmod, 1., 0.)
self.assertRaises(ValueError, math.fmod, INF, 1.)
self.assertRaises(ValueError, math.fmod, NINF, 1.)
self.assertRaises(ValueError, math.fmod, INF, 0.)
self.assertEqual(math.fmod(3.0, INF), 3.0)
self.assertEqual(math.fmod(-3.0, INF), -3.0)
self.assertEqual(math.fmod(3.0, NINF), 3.0)
self.assertEqual(math.fmod(-3.0, NINF), -3.0)
self.assertEqual(math.fmod(0.0, 3.0), 0.0)
self.assertEqual(math.fmod(0.0, NINF), 0.0)
def testFrexp(self):
self.assertRaises(TypeError, math.frexp)
def testfrexp(name, result, expected):
(mant, exp), (emant, eexp) = result, expected
if abs(mant-emant) > eps or exp != eexp:
self.fail('%s returned %r, expected %r'%\
(name, (mant, exp), (emant,eexp)))
testfrexp('frexp(-1)', math.frexp(-1), (-0.5, 1))
testfrexp('frexp(0)', math.frexp(0), (0, 0))
testfrexp('frexp(1)', math.frexp(1), (0.5, 1))
testfrexp('frexp(2)', math.frexp(2), (0.5, 2))
self.assertEqual(math.frexp(INF)[0], INF)
self.assertEqual(math.frexp(NINF)[0], NINF)
self.assertTrue(math.isnan(math.frexp(NAN)[0]))
@requires_IEEE_754
@unittest.skipIf(HAVE_DOUBLE_ROUNDING,
"fsum is not exact on machines with double rounding")
def testFsum(self):
# math.fsum relies on exact rounding for correct operation.
# There's a known problem with IA32 floating-point that causes
# inexact rounding in some situations, and will cause the
# math.fsum tests below to fail; see issue #2937. On non IEEE
# 754 platforms, and on IEEE 754 platforms that exhibit the
# problem described in issue #2937, we simply skip the whole
# test.
# Python version of math.fsum, for comparison. Uses a
# different algorithm based on frexp, ldexp and integer
# arithmetic.
from sys import float_info
mant_dig = float_info.mant_dig
etiny = float_info.min_exp - mant_dig
def msum(iterable):
"""Full precision summation. Compute sum(iterable) without any
intermediate accumulation of error. Based on the 'lsum' function
at http://code.activestate.com/recipes/393090/
"""
tmant, texp = 0, 0
for x in iterable:
mant, exp = math.frexp(x)
mant, exp = int(math.ldexp(mant, mant_dig)), exp - mant_dig
if texp > exp:
tmant <<= texp-exp
texp = exp
else:
mant <<= exp-texp
tmant += mant
# Round tmant * 2**texp to a float. The original recipe
# used float(str(tmant)) * 2.0**texp for this, but that's
# a little unsafe because str -> float conversion can't be
# relied upon to do correct rounding on all platforms.
tail = max(len(bin(abs(tmant)))-2 - mant_dig, etiny - texp)
if tail > 0:
h = 1 << (tail-1)
tmant = tmant // (2*h) + bool(tmant & h and tmant & 3*h-1)
texp += tail
return math.ldexp(tmant, texp)
test_values = [
([], 0.0),
([0.0], 0.0),
([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100),
([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0),
([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
([1./n for n in range(1, 1001)],
float.fromhex('0x1.df11f45f4e61ap+2')),
([(-1.)**n/n for n in range(1, 1001)],
float.fromhex('-0x1.62a2af1bd3624p-1')),
([1.7**(i+1)-1.7**i for i in range(1000)] + [-1.7**1000], -1.0),
([1e16, 1., 1e-16], 10000000000000002.0),
([1e16-2., 1.-2.**-53, -(1e16-2.), -(1.-2.**-53)], 0.0),
# exercise code for resizing partials array
([2.**n - 2.**(n+50) + 2.**(n+52) for n in range(-1074, 972, 2)] +
[-2.**1022],
float.fromhex('0x1.5555555555555p+970')),
]
for i, (vals, expected) in enumerate(test_values):
try:
actual = math.fsum(vals)
except OverflowError:
self.fail("test %d failed: got OverflowError, expected %r "
"for math.fsum(%.100r)" % (i, expected, vals))
except ValueError:
self.fail("test %d failed: got ValueError, expected %r "
"for math.fsum(%.100r)" % (i, expected, vals))
self.assertEqual(actual, expected)
from random import random, gauss, shuffle
for j in xrange(1000):
vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10
s = 0
for i in xrange(200):
v = gauss(0, random()) ** 7 - s
s += v
vals.append(v)
shuffle(vals)
s = msum(vals)
self.assertEqual(msum(vals), math.fsum(vals))
def testHypot(self):
self.assertRaises(TypeError, math.hypot)
self.ftest('hypot(0,0)', math.hypot(0,0), 0)
self.ftest('hypot(3,4)', math.hypot(3,4), 5)
self.assertEqual(math.hypot(NAN, INF), INF)
self.assertEqual(math.hypot(INF, NAN), INF)
self.assertEqual(math.hypot(NAN, NINF), INF)
self.assertEqual(math.hypot(NINF, NAN), INF)
self.assertTrue(math.isnan(math.hypot(1.0, NAN)))
self.assertTrue(math.isnan(math.hypot(NAN, -2.0)))
def testLdexp(self):
self.assertRaises(TypeError, math.ldexp)
self.ftest('ldexp(0,1)', math.ldexp(0,1), 0)
self.ftest('ldexp(1,1)', math.ldexp(1,1), 2)
self.ftest('ldexp(1,-1)', math.ldexp(1,-1), 0.5)
self.ftest('ldexp(-1,1)', math.ldexp(-1,1), -2)
self.assertRaises(OverflowError, math.ldexp, 1., 1000000)
self.assertRaises(OverflowError, math.ldexp, -1., 1000000)
self.assertEqual(math.ldexp(1., -1000000), 0.)
self.assertEqual(math.ldexp(-1., -1000000), -0.)
self.assertEqual(math.ldexp(INF, 30), INF)
self.assertEqual(math.ldexp(NINF, -213), NINF)
self.assertTrue(math.isnan(math.ldexp(NAN, 0)))
# large second argument
for n in [10**5, 10L**5, 10**10, 10L**10, 10**20, 10**40]:
self.assertEqual(math.ldexp(INF, -n), INF)
self.assertEqual(math.ldexp(NINF, -n), NINF)
self.assertEqual(math.ldexp(1., -n), 0.)
self.assertEqual(math.ldexp(-1., -n), -0.)
self.assertEqual(math.ldexp(0., -n), 0.)
self.assertEqual(math.ldexp(-0., -n), -0.)
self.assertTrue(math.isnan(math.ldexp(NAN, -n)))
self.assertRaises(OverflowError, math.ldexp, 1., n)
self.assertRaises(OverflowError, math.ldexp, -1., n)
self.assertEqual(math.ldexp(0., n), 0.)
self.assertEqual(math.ldexp(-0., n), -0.)
self.assertEqual(math.ldexp(INF, n), INF)
self.assertEqual(math.ldexp(NINF, n), NINF)
self.assertTrue(math.isnan(math.ldexp(NAN, n)))
def testLog(self):
self.assertRaises(TypeError, math.log)
self.ftest('log(1/e)', math.log(1/math.e), -1)
self.ftest('log(1)', math.log(1), 0)
self.ftest('log(e)', math.log(math.e), 1)
self.ftest('log(32,2)', math.log(32,2), 5)
self.ftest('log(10**40, 10)', math.log(10**40, 10), 40)
self.ftest('log(10**40, 10**20)', math.log(10**40, 10**20), 2)
self.assertEqual(math.log(INF), INF)
self.assertRaises(ValueError, math.log, NINF)
self.assertTrue(math.isnan(math.log(NAN)))
def testLog1p(self):
self.assertRaises(TypeError, math.log1p)
self.ftest('log1p(1/e -1)', math.log1p(1/math.e-1), -1)
self.ftest('log1p(0)', math.log1p(0), 0)
self.ftest('log1p(e-1)', math.log1p(math.e-1), 1)
self.ftest('log1p(1)', math.log1p(1), math.log(2))
self.assertEqual(math.log1p(INF), INF)
self.assertRaises(ValueError, math.log1p, NINF)
self.assertTrue(math.isnan(math.log1p(NAN)))
n= 2**90
self.assertAlmostEqual(math.log1p(n), 62.383246250395075)
self.assertAlmostEqual(math.log1p(n), math.log1p(float(n)))
def testLog10(self):
self.assertRaises(TypeError, math.log10)
self.ftest('log10(0.1)', math.log10(0.1), -1)
self.ftest('log10(1)', math.log10(1), 0)
self.ftest('log10(10)', math.log10(10), 1)
self.assertEqual(math.log(INF), INF)
self.assertRaises(ValueError, math.log10, NINF)
self.assertTrue(math.isnan(math.log10(NAN)))
def testModf(self):
self.assertRaises(TypeError, math.modf)
def testmodf(name, result, expected):
(v1, v2), (e1, e2) = result, expected
if abs(v1-e1) > eps or abs(v2-e2):
self.fail('%s returned %r, expected %r'%\
(name, (v1,v2), (e1,e2)))
testmodf('modf(1.5)', math.modf(1.5), (0.5, 1.0))
testmodf('modf(-1.5)', math.modf(-1.5), (-0.5, -1.0))
self.assertEqual(math.modf(INF), (0.0, INF))
self.assertEqual(math.modf(NINF), (-0.0, NINF))
modf_nan = math.modf(NAN)
self.assertTrue(math.isnan(modf_nan[0]))
self.assertTrue(math.isnan(modf_nan[1]))
def testPow(self):
self.assertRaises(TypeError, math.pow)
self.ftest('pow(0,1)', math.pow(0,1), 0)
self.ftest('pow(1,0)', math.pow(1,0), 1)
self.ftest('pow(2,1)', math.pow(2,1), 2)
self.ftest('pow(2,-1)', math.pow(2,-1), 0.5)
self.assertEqual(math.pow(INF, 1), INF)
self.assertEqual(math.pow(NINF, 1), NINF)
self.assertEqual((math.pow(1, INF)), 1.)
self.assertEqual((math.pow(1, NINF)), 1.)
self.assertTrue(math.isnan(math.pow(NAN, 1)))
self.assertTrue(math.isnan(math.pow(2, NAN)))
self.assertTrue(math.isnan(math.pow(0, NAN)))
self.assertEqual(math.pow(1, NAN), 1)
# pow(0., x)
self.assertEqual(math.pow(0., INF), 0.)
self.assertEqual(math.pow(0., 3.), 0.)
self.assertEqual(math.pow(0., 2.3), 0.)
self.assertEqual(math.pow(0., 2.), 0.)
self.assertEqual(math.pow(0., 0.), 1.)
self.assertEqual(math.pow(0., -0.), 1.)
self.assertRaises(ValueError, math.pow, 0., -2.)
self.assertRaises(ValueError, math.pow, 0., -2.3)
self.assertRaises(ValueError, math.pow, 0., -3.)
self.assertRaises(ValueError, math.pow, 0., NINF)
self.assertTrue(math.isnan(math.pow(0., NAN)))
# pow(INF, x)
self.assertEqual(math.pow(INF, INF), INF)
self.assertEqual(math.pow(INF, 3.), INF)
self.assertEqual(math.pow(INF, 2.3), INF)
self.assertEqual(math.pow(INF, 2.), INF)
self.assertEqual(math.pow(INF, 0.), 1.)
self.assertEqual(math.pow(INF, -0.), 1.)
self.assertEqual(math.pow(INF, -2.), 0.)
self.assertEqual(math.pow(INF, -2.3), 0.)
self.assertEqual(math.pow(INF, -3.), 0.)
self.assertEqual(math.pow(INF, NINF), 0.)
self.assertTrue(math.isnan(math.pow(INF, NAN)))
# pow(-0., x)
self.assertEqual(math.pow(-0., INF), 0.)
self.assertEqual(math.pow(-0., 3.), -0.)
self.assertEqual(math.pow(-0., 2.3), 0.)
self.assertEqual(math.pow(-0., 2.), 0.)
self.assertEqual(math.pow(-0., 0.), 1.)
self.assertEqual(math.pow(-0., -0.), 1.)
self.assertRaises(ValueError, math.pow, -0., -2.)
self.assertRaises(ValueError, math.pow, -0., -2.3)
self.assertRaises(ValueError, math.pow, -0., -3.)
self.assertRaises(ValueError, math.pow, -0., NINF)
self.assertTrue(math.isnan(math.pow(-0., NAN)))
# pow(NINF, x)
self.assertEqual(math.pow(NINF, INF), INF)
self.assertEqual(math.pow(NINF, 3.), NINF)
self.assertEqual(math.pow(NINF, 2.3), INF)
self.assertEqual(math.pow(NINF, 2.), INF)
self.assertEqual(math.pow(NINF, 0.), 1.)
self.assertEqual(math.pow(NINF, -0.), 1.)
self.assertEqual(math.pow(NINF, -2.), 0.)
self.assertEqual(math.pow(NINF, -2.3), 0.)
self.assertEqual(math.pow(NINF, -3.), -0.)
self.assertEqual(math.pow(NINF, NINF), 0.)
self.assertTrue(math.isnan(math.pow(NINF, NAN)))
# pow(-1, x)
self.assertEqual(math.pow(-1., INF), 1.)
self.assertEqual(math.pow(-1., 3.), -1.)
self.assertRaises(ValueError, math.pow, -1., 2.3)
self.assertEqual(math.pow(-1., 2.), 1.)
self.assertEqual(math.pow(-1., 0.), 1.)
self.assertEqual(math.pow(-1., -0.), 1.)
self.assertEqual(math.pow(-1., -2.), 1.)
self.assertRaises(ValueError, math.pow, -1., -2.3)
self.assertEqual(math.pow(-1., -3.), -1.)
self.assertEqual(math.pow(-1., NINF), 1.)
self.assertTrue(math.isnan(math.pow(-1., NAN)))
# pow(1, x)
self.assertEqual(math.pow(1., INF), 1.)
self.assertEqual(math.pow(1., 3.), 1.)
self.assertEqual(math.pow(1., 2.3), 1.)
self.assertEqual(math.pow(1., 2.), 1.)
self.assertEqual(math.pow(1., 0.), 1.)
self.assertEqual(math.pow(1., -0.), 1.)
self.assertEqual(math.pow(1., -2.), 1.)
self.assertEqual(math.pow(1., -2.3), 1.)
self.assertEqual(math.pow(1., -3.), 1.)
self.assertEqual(math.pow(1., NINF), 1.)
self.assertEqual(math.pow(1., NAN), 1.)
# pow(x, 0) should be 1 for any x
self.assertEqual(math.pow(2.3, 0.), 1.)
self.assertEqual(math.pow(-2.3, 0.), 1.)
self.assertEqual(math.pow(NAN, 0.), 1.)
self.assertEqual(math.pow(2.3, -0.), 1.)
self.assertEqual(math.pow(-2.3, -0.), 1.)
self.assertEqual(math.pow(NAN, -0.), 1.)
# pow(x, y) is invalid if x is negative and y is not integral
self.assertRaises(ValueError, math.pow, -1., 2.3)
self.assertRaises(ValueError, math.pow, -15., -3.1)
# pow(x, NINF)
self.assertEqual(math.pow(1.9, NINF), 0.)
self.assertEqual(math.pow(1.1, NINF), 0.)
self.assertEqual(math.pow(0.9, NINF), INF)
self.assertEqual(math.pow(0.1, NINF), INF)
self.assertEqual(math.pow(-0.1, NINF), INF)
self.assertEqual(math.pow(-0.9, NINF), INF)
self.assertEqual(math.pow(-1.1, NINF), 0.)
self.assertEqual(math.pow(-1.9, NINF), 0.)
# pow(x, INF)
self.assertEqual(math.pow(1.9, INF), INF)
self.assertEqual(math.pow(1.1, INF), INF)
self.assertEqual(math.pow(0.9, INF), 0.)
self.assertEqual(math.pow(0.1, INF), 0.)
self.assertEqual(math.pow(-0.1, INF), 0.)
self.assertEqual(math.pow(-0.9, INF), 0.)
self.assertEqual(math.pow(-1.1, INF), INF)
self.assertEqual(math.pow(-1.9, INF), INF)
# pow(x, y) should work for x negative, y an integer
self.ftest('(-2.)**3.', math.pow(-2.0, 3.0), -8.0)
self.ftest('(-2.)**2.', math.pow(-2.0, 2.0), 4.0)
self.ftest('(-2.)**1.', math.pow(-2.0, 1.0), -2.0)
self.ftest('(-2.)**0.', math.pow(-2.0, 0.0), 1.0)
self.ftest('(-2.)**-0.', math.pow(-2.0, -0.0), 1.0)
self.ftest('(-2.)**-1.', math.pow(-2.0, -1.0), -0.5)
self.ftest('(-2.)**-2.', math.pow(-2.0, -2.0), 0.25)
self.ftest('(-2.)**-3.', math.pow(-2.0, -3.0), -0.125)
self.assertRaises(ValueError, math.pow, -2.0, -0.5)
self.assertRaises(ValueError, math.pow, -2.0, 0.5)
# the following tests have been commented out since they don't
# really belong here: the implementation of ** for floats is
# independent of the implementation of math.pow
#self.assertEqual(1**NAN, 1)
#self.assertEqual(1**INF, 1)
#self.assertEqual(1**NINF, 1)
#self.assertEqual(1**0, 1)
#self.assertEqual(1.**NAN, 1)
#self.assertEqual(1.**INF, 1)
#self.assertEqual(1.**NINF, 1)
#self.assertEqual(1.**0, 1)
def testRadians(self):
self.assertRaises(TypeError, math.radians)
self.ftest('radians(180)', math.radians(180), math.pi)
self.ftest('radians(90)', math.radians(90), math.pi/2)
self.ftest('radians(-45)', math.radians(-45), -math.pi/4)
def testSin(self):
self.assertRaises(TypeError, math.sin)
self.ftest('sin(0)', math.sin(0), 0)
self.ftest('sin(pi/2)', math.sin(math.pi/2), 1)
self.ftest('sin(-pi/2)', math.sin(-math.pi/2), -1)
try:
self.assertTrue(math.isnan(math.sin(INF)))
self.assertTrue(math.isnan(math.sin(NINF)))
except ValueError:
self.assertRaises(ValueError, math.sin, INF)
self.assertRaises(ValueError, math.sin, NINF)
self.assertTrue(math.isnan(math.sin(NAN)))
def testSinh(self):
self.assertRaises(TypeError, math.sinh)
self.ftest('sinh(0)', math.sinh(0), 0)
self.ftest('sinh(1)**2-cosh(1)**2', math.sinh(1)**2-math.cosh(1)**2, -1)
self.ftest('sinh(1)+sinh(-1)', math.sinh(1)+math.sinh(-1), 0)
self.assertEqual(math.sinh(INF), INF)
self.assertEqual(math.sinh(NINF), NINF)
self.assertTrue(math.isnan(math.sinh(NAN)))
def testSqrt(self):
self.assertRaises(TypeError, math.sqrt)
self.ftest('sqrt(0)', math.sqrt(0), 0)
self.ftest('sqrt(1)', math.sqrt(1), 1)
self.ftest('sqrt(4)', math.sqrt(4), 2)
self.assertEqual(math.sqrt(INF), INF)
self.assertRaises(ValueError, math.sqrt, NINF)
self.assertTrue(math.isnan(math.sqrt(NAN)))
def testTan(self):
self.assertRaises(TypeError, math.tan)
self.ftest('tan(0)', math.tan(0), 0)
self.ftest('tan(pi/4)', math.tan(math.pi/4), 1)
self.ftest('tan(-pi/4)', math.tan(-math.pi/4), -1)
try:
self.assertTrue(math.isnan(math.tan(INF)))
self.assertTrue(math.isnan(math.tan(NINF)))
except:
self.assertRaises(ValueError, math.tan, INF)
self.assertRaises(ValueError, math.tan, NINF)
self.assertTrue(math.isnan(math.tan(NAN)))
def testTanh(self):
self.assertRaises(TypeError, math.tanh)
self.ftest('tanh(0)', math.tanh(0), 0)
self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0)
self.ftest('tanh(inf)', math.tanh(INF), 1)
self.ftest('tanh(-inf)', math.tanh(NINF), -1)
self.assertTrue(math.isnan(math.tanh(NAN)))
# check that tanh(-0.) == -0. on IEEE 754 systems
if float.__getformat__("double").startswith("IEEE"):
self.assertEqual(math.tanh(-0.), -0.)
self.assertEqual(math.copysign(1., math.tanh(-0.)),
math.copysign(1., -0.))
def test_trunc(self):
self.assertEqual(math.trunc(1), 1)
self.assertEqual(math.trunc(-1), -1)
self.assertEqual(type(math.trunc(1)), int)
self.assertEqual(type(math.trunc(1.5)), int)
self.assertEqual(math.trunc(1.5), 1)
self.assertEqual(math.trunc(-1.5), -1)
self.assertEqual(math.trunc(1.999999), 1)
self.assertEqual(math.trunc(-1.999999), -1)
self.assertEqual(math.trunc(-0.999999), -0)
self.assertEqual(math.trunc(-100.999), -100)
class TestTrunc(object):
def __trunc__(self):
return 23
class TestNoTrunc(object):
pass
self.assertEqual(math.trunc(TestTrunc()), 23)
self.assertRaises(TypeError, math.trunc)
self.assertRaises(TypeError, math.trunc, 1, 2)
self.assertRaises((AttributeError, TypeError), math.trunc,
TestNoTrunc())
def testIsnan(self):
self.assertTrue(math.isnan(float("nan")))
self.assertTrue(math.isnan(float("inf")* 0.))
self.assertFalse(math.isnan(float("inf")))
self.assertFalse(math.isnan(0.))
self.assertFalse(math.isnan(1.))
def testIsinf(self):
self.assertTrue(math.isinf(float("inf")))
self.assertTrue(math.isinf(float("-inf")))
self.assertTrue(math.isinf(1E400))
self.assertTrue(math.isinf(-1E400))
self.assertFalse(math.isinf(float("nan")))
self.assertFalse(math.isinf(0.))
self.assertFalse(math.isinf(1.))
# RED_FLAG 16-Oct-2000 Tim
# While 2.0 is more consistent about exceptions than previous releases, it
# still fails this part of the test on some platforms. For now, we only
# *run* test_exceptions() in verbose mode, so that this isn't normally
# tested.
if verbose:
def test_exceptions(self):
try:
x = math.exp(-1000000000)
except:
# mathmodule.c is failing to weed out underflows from libm, or
# we've got an fp format with huge dynamic range
self.fail("underflowing exp() should not have raised "
"an exception")
if x != 0:
self.fail("underflowing exp() should have returned 0")
# If this fails, probably using a strict IEEE-754 conforming libm, and x
# is +Inf afterwards. But Python wants overflows detected by default.
try:
x = math.exp(1000000000)
except OverflowError:
pass
else:
self.fail("overflowing exp() didn't trigger OverflowError")
# If this fails, it could be a puzzle. One odd possibility is that
# mathmodule.c's macros are getting confused while comparing
# Inf (HUGE_VAL) to a NaN, and artificially setting errno to ERANGE
# as a result (and so raising OverflowError instead).
try:
x = math.sqrt(-1.0)
except ValueError:
pass
else:
self.fail("sqrt(-1) didn't raise ValueError")
@requires_IEEE_754
def test_testfile(self):
for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
# Skip if either the input or result is complex, or if
# flags is nonempty
if ai != 0. or ei != 0. or flags:
continue
if fn in ['rect', 'polar']:
# no real versions of rect, polar
continue
func = getattr(math, fn)
try:
result = func(ar)
except ValueError:
message = ("Unexpected ValueError in " +
"test %s:%s(%r)\n" % (id, fn, ar))
self.fail(message)
except OverflowError:
message = ("Unexpected OverflowError in " +
"test %s:%s(%r)\n" % (id, fn, ar))
self.fail(message)
self.ftest("%s:%s(%r)" % (id, fn, ar), result, er)
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles")
def test_mtestfile(self):
ALLOWED_ERROR = 20 # permitted error, in ulps
fail_fmt = "{}:{}({!r}): expected {!r}, got {!r}"
failures = []
for id, fn, arg, expected, flags in parse_mtestfile(math_testcases):
func = getattr(math, fn)
if 'invalid' in flags or 'divide-by-zero' in flags:
expected = 'ValueError'
elif 'overflow' in flags:
expected = 'OverflowError'
try:
got = func(arg)
except ValueError:
got = 'ValueError'
except OverflowError:
got = 'OverflowError'
accuracy_failure = None
if isinstance(got, float) and isinstance(expected, float):
if math.isnan(expected) and math.isnan(got):
continue
if not math.isnan(expected) and not math.isnan(got):
if fn == 'lgamma':
# we use a weaker accuracy test for lgamma;
# lgamma only achieves an absolute error of
# a few multiples of the machine accuracy, in
# general.
accuracy_failure = acc_check(expected, got,
rel_err = 5e-15,
abs_err = 5e-15)
elif fn == 'erfc':
# erfc has less-than-ideal accuracy for large
# arguments (x ~ 25 or so), mainly due to the
# error involved in computing exp(-x*x).
#
# XXX Would be better to weaken this test only
# for large x, instead of for all x.
#
# XXX In Jython the accuracy is less, 200000 instead of
# 2000 as in CPython. We need to investigate that.
accuracy_failure = ulps_check(expected, got, 200000)
else:
accuracy_failure = ulps_check(expected, got, 20)
if accuracy_failure is None:
continue
if isinstance(got, str) and isinstance(expected, str):
if got == expected:
continue
fail_msg = fail_fmt.format(id, fn, arg, expected, got)
if accuracy_failure is not None:
fail_msg += ' ({})'.format(accuracy_failure)
failures.append(fail_msg)
if failures:
self.fail('Failures in test_mtestfile:\n ' +
'\n '.join(failures))
def test_main():
from doctest import DocFileSuite
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(MathTests))
suite.addTest(DocFileSuite("ieee754.txt"))
run_unittest(suite)
if __name__ == '__main__':
test_main()