All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.org.python.modules.cmath Maven / Gradle / Ivy

Go to download

Jython is an implementation of the high-level, dynamic, object-oriented language Python written in 100% Pure Java, and seamlessly integrated with the Java platform. It thus allows you to run Python on any Java platform.

There is a newer version: 2.7.4
Show newest version
package org.python.modules;

import org.python.core.Py;
import org.python.core.PyComplex;
import org.python.core.PyException;
import org.python.core.PyFloat;
import org.python.core.PyInstance;
import org.python.core.PyObject;
import org.python.core.PyTuple;

public class cmath {

    public static final PyFloat pi = new PyFloat(Math.PI);
    public static final PyFloat e = new PyFloat(Math.E);

    /** 2 (Ref: Abramowitz & Stegun [1972], p2). */
    private static final double ROOT_HALF = 0.70710678118654752440;
    /** ln({@link Double#MAX_VALUE}) or a little less */
    private static final double NEARLY_LN_DBL_MAX = 709.4361393;
    /**
     * For x larger than this, e-x is negligible compared with
     * ex, or equivalently 1 is negligible compared with e2x, in
     * IEEE-754 floating point. Beyond this, sinh x and cosh x are adequately
     * approximated by 0.5ex. The smallest theoretical value is 27 ln(2).
     */
    private static final double ATLEAST_27LN2 = 18.72;
    private static final double HALF_E2 = 0.5 * Math.E * Math.E;

    /** log10e (Ref: Abramowitz & Stegun [1972], p3). */
    private static final double LOG10E = 0.43429448190325182765;

    private static PyComplex complexFromPyObject(PyObject obj) {
        // If op is already of type PyComplex_Type, return its value
        if (obj instanceof PyComplex) {
            return (PyComplex)obj;
        }

        // If not, use op's __complex__ method, if it exists
        PyObject newObj = null;
        if (obj instanceof PyInstance) {
            // this can go away in python 3000
            if (obj.__findattr__("__complex__") != null) {
                newObj = obj.invoke("__complex__");
            }
            // else try __float__
        } else {
            PyObject complexFunc = obj.getType().lookup("__complex__");
            if (complexFunc != null) {
                newObj = complexFunc.__call__(obj);
            }
        }

        if (newObj != null) {
            if (!(newObj instanceof PyComplex)) {
                throw Py.TypeError("__complex__ should return a complex object");
            }
            return (PyComplex)newObj;
        }

        // If neither of the above works, interpret op as a float giving the real part of
        // the result, and fill in the imaginary part as 0
        return new PyComplex(obj.asDouble(), 0);
    }

    /**
     * Return the arc cosine of w. There are two branch cuts. One extends right from 1 along the
     * real axis to ∞, continuous from below. The other extends left from -1 along the real
     * axis to -∞, continuous from above.
     *
     * @param w
     * @return cos-1w
     */
    public static PyComplex acos(PyObject w) {
        return _acos(complexFromPyObject(w));
    }

    /**
     * Helper to compute cos-1w. The method used is as in CPython:
     * 

* a = (1-w)½ = √2 sin z/2
* b = (1+w)½ = √2 cos z/2 *

* Then, with z = x+iy, a = a1+ia2, and b = * b1+ib2, *

* a1 / b1 = tan x/2
* a2b1 - a1b2 = sinh y *

* and we use {@link Math#atan2(double, double)} and {@link math#asinh(double)} to obtain * x and y. *

* For w sufficiently large that w2≫1, cos-1w * ≈ -i ln(2w). * * @param w * @return cos-1w */ private static PyComplex _acos(PyComplex w) { // Let z = x + iy and w = u + iv. double x, y, u = w.real, v = w.imag; if (Math.abs(u) > 0x1p27 || Math.abs(v) > 0x1p27) { /* * w is large: approximate 2cos(z) by exp(i(x+iy)) or exp(-i(x+iy)), whichever * dominates. Hence, z = x+iy = i ln(2(u+iv)) or -i ln(2(u+iv)) */ x = Math.atan2(Math.abs(v), u); y = Math.copySign(logHypot(u, v) + math.LN2, -v); } else if (Double.isNaN(v)) { // Special cases x = (u == 0.) ? Math.PI / 2. : v; y = v; } else { // Normal case, without risk of overflow. PyComplex a = sqrt(new PyComplex(1. - u, -v)); // a = sqrt(1-w) = sqrt(2) sin(z/2) PyComplex b = sqrt(new PyComplex(1 + u, v)); // b = sqrt(1+w) = sqrt(2) cos(z/2) // Arguments here are sin(x/2)cosh(y/2), cos(x/2)cosh(y/2) giving tan(x/2) x = 2. * Math.atan2(a.real, b.real); // 2 (cos(x/2)**2+sin(x/2)**2) sinh(y/2)cosh(y/2) = sinh y y = math.asinh(a.imag * b.real - a.real * b.imag); } // If that generated a nan, and there wasn't one in the argument, raise a domain error. return exceptNaN(new PyComplex(x, y), w); } /** * Return the hyperbolic arc cosine of w. There is one branch cut, extending left from 1 along * the real axis to -∞, continuous from above. * * @param w * @return cosh-1w */ public static PyComplex acosh(PyObject w) { return _acosh(complexFromPyObject(w)); } /** * Helper to compute z = cosh-1w. The method used is as in CPython: *

* a = (w-1)½ = √2 sinh z/2
* b = (w+1)½ = √2 cosh z/2 *

* Then, with z = x+iy, a = a1+ia2, and b = * b1+ib2, *

* a1b1 + a2b2 = sinh x
* a2 / b1 = tan y/2 *

* and we use {@link math#asinh(double)} and {@link Math#atan2(double, double)} to obtain * x and y. *

* For w sufficiently large that w2≫1, * cosh-1w ≈ ln(2w). We do not use this method also to compute * cos-1w, because the branch cuts do not correspond. * * @param w * @return cosh-1w */ private static PyComplex _acosh(PyComplex w) { // Let z = x + iy and w = u + iv. double x, y, u = w.real, v = w.imag; if (Math.abs(u) > 0x1p27 || Math.abs(v) > 0x1p27) { /* * w is large: approximate 2cosh(z) by exp(x+iy) or exp(-x-iy), whichever dominates. * Hence, z = x+iy = ln(2(u+iv)) or -ln(2(u+iv)) */ x = logHypot(u, v) + math.LN2; y = Math.atan2(v, u); } else if (v == 0. && !Double.isNaN(u)) { /* * We're on the real axis (and maybe the branch cut). u = cosh x cos y. In all cases, * the sign of y follows v. */ if (u >= 1.) { // As real library, cos y = 1, u = cosh x. x = math.acosh(u); y = v; } else if (u < -1.) { // Left part of cut: cos y = -1, u = -cosh x x = math.acosh(-u); y = Math.copySign(Math.PI, v); } else { // -1 <= u <= 1: cosh x = 1, u = cos y. x = 0.; y = Math.copySign(Math.acos(u), v); } } else { // Normal case, without risk of overflow. PyComplex a = sqrt(new PyComplex(u - 1., v)); // a = sqrt(w-1) = sqrt(2) sinh(z/2) PyComplex b = sqrt(new PyComplex(u + 1., v)); // b = sqrt(w+1) = sqrt(2) cosh(z/2) // 2 sinh(x/2)cosh(x/2) (cos(y/2)**2+sin(y/2)**2) = sinh x x = math.asinh(a.real * b.real + a.imag * b.imag); // Arguments here are cosh(x/2)sin(y/2) and cosh(x/2)cos(y/2) giving tan y/2 y = 2. * Math.atan2(a.imag, b.real); } // If that generated a nan, and there wasn't one in the argument, raise a domain error. return exceptNaN(new PyComplex(x, y), w); } /** * Return the arc sine of w. There are two branch cuts. One extends right from 1 along the real * axis to ∞, continuous from below. The other extends left from -1 along the real axis to * -∞, continuous from above. * * @param w * @return sin-1w */ public static PyComplex asin(PyObject w) { return asinOrAsinh(complexFromPyObject(w), false); } /** * Return the hyperbolic arc sine of w. There are two branch cuts. One extends from 1j along the * imaginary axis to ∞j, continuous from the right. The other extends from -1j along the * imaginary axis to -∞j, continuous from the left. * * @param w * @return sinh-1w */ public static PyComplex asinh(PyObject w) { return asinOrAsinh(complexFromPyObject(w), true); } /** * Helper to compute either sin-1w or sinh-1w. The method * used is as in CPython: *

* a = (1-iw)½ = √2 sin(π/4-iz/2)
* b = (1+iw)½ = √2 cos(π/4-iz/2) *

* Then, with w = u+iv, z = x+iy, a = a1+ia2, and * b = b1+ib2, *

* a1b2 - a2b2 = sinh x
* v / (a2b1 - a1b2) = tan y *

* and we use {@link math#asinh(double)} and {@link Math#atan2(double, double)} to obtain * x and y. *

* For w sufficiently large that w2≫1, * sinh-1w ≈ ln(2w). When computing sin-1w, we * evaluate -i sinh-1iw instead. * * @param w * @param h true to compute sinh-1w, false to * compute sin-1w. * @return sinh-1w or sin-1w */ private static PyComplex asinOrAsinh(PyComplex w, boolean h) { double u, v, x, y; PyComplex z; if (h) { // We compute z = asinh(w). Let z = x + iy and w = u + iv. u = w.real; v = w.imag; // Then the function body computes x + iy = asinh(w). } else { // We compute w = asin(z). Unusually, let w = u - iv, so u + iv = iw. v = w.real; u = -w.imag; // Then as before, the function body computes asinh(u+iv) = asinh(iw) = i asin(w), // but we finally return z = y - ix = -i asinh(iw) = asin(w). } if (Double.isNaN(u)) { // Special case for nan in real part. Default clause deals naturally with v=nan. if (v == 0.) { x = u; y = v; } else if (Double.isInfinite(v)) { x = Double.POSITIVE_INFINITY; y = u; } else { // Any other value of v -> nan+nanj x = y = u; } } else if (Math.abs(u) > 0x1p27 || Math.abs(v) > 0x1p27) { /* * w is large: approximate 2sinh(z) by exp(x+iy) or -exp(-x-iy), whichever dominates. * Hence, z = x+iy = ln(2(u+iv)) or -ln(-2(u+iv)) */ x = logHypot(u, v) + math.LN2; if (Math.copySign(1., u) > 0.) { y = Math.atan2(v, u); } else { // Adjust for sign, choosing the angle so that -pi/2 < y < pi/2 x = -x; y = Math.atan2(v, -u); } } else { // Normal case, without risk of overflow. PyComplex a = sqrt(new PyComplex(1. + v, -u)); // a = sqrt(1-iw) PyComplex b = sqrt(new PyComplex(1. - v, u)); // b = sqrt(1+iw) // Combine the parts so as that terms in y cancel, leaving us with sinh x: x = math.asinh(a.real * b.imag - a.imag * b.real); // The arguments are v = cosh x sin y, and cosh x cos y y = Math.atan2(v, a.real * b.real - a.imag * b.imag); } // Compose the result w according to whether we're computing asin(w) or asinh(w). if (h) { z = new PyComplex(x, y); // z = x + iy = asinh(u+iv). } else { z = new PyComplex(y, -x); // z = y - ix = -i asinh(v-iu) = asin(w) } // If that generated a nan, and there wasn't one in the argument, raise a domain error. return exceptNaN(z, w); } /** * Return the arc tangent of w. There are two branch cuts. One extends from 1j along the * imaginary axis to ∞j, continuous from the right. The other extends from -1j along the * imaginary axis to -∞j, continuous from the left. * * @param w * @return tan-1w */ public static PyComplex atan(PyObject w) { return atanOrAtanh(complexFromPyObject(w), false); } /** * Return the hyperbolic arc tangent of w. There are two branch cuts. One extends from 1 along * the real axis to ∞, continuous from below. The other extends from -1 along the real * axis to -∞, continuous from above. * * @param w * @return tanh-1w */ public static PyComplex atanh(PyObject w) { return atanOrAtanh(complexFromPyObject(w), true); } /** * Helper to compute either tan-1w or tanh-1w. The method * used is close to that used in CPython. For z = tanh-1w: *

* z = ½ln(1 + 2w/(1-w)) *

* Then, letting z = x+iy, and w = u+iv, *

* x = ¼ln(1 + 4u/((1-u)2+v2)) = * -¼ln(1 - 4u/((1+u)2+v2))
* y = ½tan-1(2v / ((1+u)(1-u)-v2))
*

* We use {@link math#log1p(double)} and {@link Math#atan2(double, double)} to obtain x * and y. The second expression for x is used when u<0. For * w sufficiently large that w2≫1, tanh-1w * ≈ 1/w ± iπ/2). For small w, tanh-1w ≈ * w. When computing tan-1w, we evaluate -i * tanh-1iw instead. * * @param w * @param h true to compute tanh-1w, false to * compute tan-1w. * @return tanh-1w or tan-1w */ private static PyComplex atanOrAtanh(PyComplex w, boolean h) { double u, v, x, y; PyComplex z; if (h) { // We compute z = atanh(w). Let z = x + iy and w = u + iv. u = w.real; v = w.imag; // Then the function body computes x + iy = atanh(w). } else { // We compute w = atan(z). Unusually, let w = u - iv, so u + iv = iw. v = w.real; u = -w.imag; // Then as before, the function body computes atanh(u+iv) = atanh(iw) = i atan(w), // but we finally return z = y - ix = -i atanh(iw) = atan(w). } double absu = Math.abs(u), absv = Math.abs(v); if (absu >= 0x1p511 || absv >= 0x1p511) { // w is large: approximate atanh(w) by 1/w + i pi/2. 1/w = conjg(w)/|w|**2. if (Double.isInfinite(absu) || Double.isInfinite(absv)) { x = Math.copySign(0., u); } else { // w is also too big to square, carry a 2**-N scaling factor. int N = 520; double uu = Math.scalb(u, -N), vv = Math.scalb(v, -N); double mod2w = uu * uu + vv * vv; x = Math.scalb(uu / mod2w, -N); } // We don't need the imaginary part of 1/z. Just pi/2 with the sign of v. (If not nan.) if (Double.isNaN(v)) { y = v; } else { y = Math.copySign(Math.PI / 2., v); } } else if (absu < 0x1p-53) { // u is small enough that u**2 may be neglected relative to 1. if (absv > 0x1p-27) { // v is not small, but is not near overflow either. double v2 = v * v; double d = 1. + v2; x = Math.copySign(Math.log1p(4. * absu / d), u) * 0.25; y = Math.atan2(2. * v, 1. - v2) * 0.5; } else { // v is also small enough that v**2 may be neglected (or is nan). So z = w. x = u; y = v; } } else if (absu == 1. && absv < 0x1p-27) { // w is close to +1 or -1: needs a different expression, good as v->0 x = Math.copySign(Math.log(absv) - math.LN2, u) * 0.5; if (v == 0.) { y = Double.NaN; } else { y = Math.copySign(Math.atan2(2., absv), v) * 0.5; } } else { /* * Normal case, without risk of overflow. The basic expression is z = * 0.5*ln((1+w)/(1-w)), which for positive u we rearrange as 0.5*ln(1+2w/(1-w)) and for * negative u as -0.5*ln(1-2w/(1+w)). By use of absu, we reduce the difference between * the expressions for u>=0 and u<0 to a sign transfer. */ double lmu = (1. - absu), lpu = (1. + absu), v2 = v * v; double d = lmu * lmu + v2; x = Math.copySign(Math.log1p(4. * absu / d), u) * 0.25; y = Math.atan2(2. * v, lmu * lpu - v2) * 0.5; } // Compose the result w according to whether we're computing atan(w) or atanh(w). if (h) { z = new PyComplex(x, y); // z = x + iy = atanh(u+iv). } else { z = new PyComplex(y, -x); // z = y - ix = -i atanh(v-iu) = atan(w) } // If that generated a nan, and there wasn't one in the argument, raise a domain error. return exceptNaN(z, w); } /** * Return the cosine of z. * * @param z * @return cos z */ public static PyComplex cos(PyObject z) { return cosOrCosh(complexFromPyObject(z), false); } /** * Return the hyperbolic cosine of z. * * @param z * @return cosh z */ public static PyComplex cosh(PyObject z) { return cosOrCosh(complexFromPyObject(z), true); } /** * Helper to compute either cos z or cosh z. * * @param z * @param h true for cosh, false for cos. * @return cos z or cosh z */ private static PyComplex cosOrCosh(PyComplex z, boolean h) { double x, y, u, v; PyComplex w; if (h) { // We compute w = cosh(z). Let w = u + iv and z = x + iy. x = z.real; y = z.imag; // Then the function body computes cosh(x+iy), according to: // u = cosh(x) cos(y), // v = sinh(x) sin(y), // And we return w = u + iv. } else { // We compute w = sin(z). Unusually, let z = y - ix, so x + iy = iz. y = z.real; x = -z.imag; // Then the function body computes cosh(x+iy) = cosh(iz) = cos(z) as before. } if (y == 0.) { // Real argument for cosh (or imaginary for cos): use real library. u = math.cosh(x); // This will raise a range error on overflow. // v is zero but follows the sign of x*y (in which y could be -0.0). v = Math.copySign(1., x) * y; } else if (x == 0.) { // Imaginary argument for cosh (or real for cos): imaginary result at this point. u = Math.cos(y); // v is zero but follows the sign of x*y (in which x could be -0.0). v = x * Math.copySign(1., y); } else { // The trig calls will not throw, although if y is infinite, they return nan. double cosy = Math.cos(y), siny = Math.sin(y), absx = Math.abs(x); if (absx == Double.POSITIVE_INFINITY) { if (!Double.isNaN(cosy)) { // w = (inf,inf), but "rotated" by the direction cosines. u = absx * cosy; v = x * siny; } else { // Provisionally w = (inf,nan), which will raise domain error if y!=nan. u = absx; v = Double.NaN; } } else if (absx > ATLEAST_27LN2) { // Use 0.5*e**x approximation. This is also the region where we risk overflow. double r = Math.exp(absx - 2.); // r approximates 2cosh(x)/e**2: multiply in this order to avoid inf: u = r * cosy * HALF_E2; // r approximates 2sinh(|x|)/e**2: put back the proper sign of x in passing. v = Math.copySign(r, x) * siny * HALF_E2; if (Double.isInfinite(u) || Double.isInfinite(v)) { // A finite x gave rise to an infinite u or v. throw math.mathRangeError(); } } else { // Normal case, without risk of overflow. u = Math.cosh(x) * cosy; v = Math.sinh(x) * siny; } } // Compose the result w = u + iv. w = new PyComplex(u, v); // If that generated a nan, and there wasn't one in the argument, raise a domain error. return exceptNaN(w, z); } /** * Return the exponential value ez. * * @param z * @return ez */ public static PyComplex exp(PyObject z) { PyComplex zz = complexFromPyObject(z); double x = zz.real, y = zz.imag, r, u, v; /* * This has a lot of corner-cases, and some of them make little sense sense, but it matches * CPython and passes the regression tests. */ if (y == 0.) { // Real value: use a real solution. (This may raise a range error.) u = math.exp(x); // v follows sign of y. v = y; } else { // The trig calls will not throw, although if y is infinite, they return nan. double cosy = Math.cos(y), siny = Math.sin(y); if (x == Double.NEGATIVE_INFINITY) { // w = (0,0) but "signed" by the direction cosines (even in they are nan). u = Math.copySign(0., cosy); v = Math.copySign(0., siny); } else if (x == Double.POSITIVE_INFINITY) { if (!Double.isNaN(cosy)) { // w = (inf,inf), but "signed" by the direction cosines. u = Math.copySign(x, cosy); v = Math.copySign(x, siny); } else { // Provisionally w = (inf,nan), which will raise domain error if y!=nan. u = x; v = Double.NaN; } } else if (x > NEARLY_LN_DBL_MAX) { // r = e**x would overflow but maybe not r*cos(y) and r*sin(y). r = Math.exp(x - 1); // = r / e u = r * cosy * Math.E; v = r * siny * Math.E; if (Double.isInfinite(u) || Double.isInfinite(v)) { // A finite x gave rise to an infinite u or v. throw math.mathRangeError(); } } else { // Normal case, without risk of overflow. // Compute r = exp(x), and return w = u + iv = r (cos(y) + i*sin(y)) r = Math.exp(x); u = r * cosy; v = r * siny; } } // If that generated a nan, and there wasn't one in the argument, raise domain error. return exceptNaN(new PyComplex(u, v), zz); } public static double phase(PyObject in) { PyComplex x = complexFromPyObject(in); return Math.atan2(x.imag, x.real); } public static PyTuple polar(PyObject in) { PyComplex z = complexFromPyObject(in); double phi = Math.atan2(z.imag, z.real); double r = math.hypot(z.real, z.imag); return new PyTuple(new PyFloat(r), new PyFloat(phi)); } /** * Return the complex number x with polar coordinates r and phi. Equivalent to * r * (math.cos(phi) + math.sin(phi)*1j). * * @param r radius * @param phi angle * @return re */ public static PyComplex rect(double r, double phi) { double x, y; if (Double.isInfinite(r) && (Double.isInfinite(phi) || Double.isNaN(phi))) { x = Double.POSITIVE_INFINITY; y = Double.NaN; } else if (phi == 0.0) { // cos(phi)=1, sin(phi)=phi: finesse oddball r in computing y, but not x. x = r; if (Double.isNaN(r)) { y = phi; } else if (Double.isInfinite(r)) { y = phi * Math.copySign(1., r); } else { y = phi * r; } } else if (r == 0.0 && (Double.isInfinite(phi) || Double.isNaN(phi))) { // Ignore any problems (inf, nan) with phi x = y = 0.; } else { // Text-book case, using the trig functions. x = r * Math.cos(phi); y = r * Math.sin(phi); } return exceptNaN(new PyComplex(x, y), r, phi); } /** * @param in * * @return true if in.real or in.imag is positive or negative infinity */ public static boolean isinf(PyObject in) { PyComplex x = complexFromPyObject(in); return Double.isInfinite(x.real) || Double.isInfinite(x.imag); } /** * @param in * * @return true if in.real or in.imag is nan. */ public static boolean isnan(PyObject in) { PyComplex x = complexFromPyObject(in); return Double.isNaN(x.real) || Double.isNaN(x.imag); } /** * Returns the natural logarithm of w. * * @param w * @return ln w */ public static PyComplex log(PyObject w) { PyComplex ww = complexFromPyObject(w); double u = ww.real, v = ww.imag; // The real part of the result is the log of the magnitude. double lnr = logHypot(u, v); // The imaginary part of the result is the arg. This may result in a nan. double theta = Math.atan2(v, u); PyComplex z = new PyComplex(lnr, theta); return exceptNaN(z, ww); } /** * Returns the common logarithm of w (base 10 logarithm). * * @param w * @return log10w */ public static PyComplex log10(PyObject w) { PyComplex ww = complexFromPyObject(w); double u = ww.real, v = ww.imag; // The expression is the same as for base e, scaled in magnitude. double logr = logHypot(u, v) * LOG10E; double theta = Math.atan2(v, u) * LOG10E; PyComplex z = new PyComplex(logr, theta); return exceptNaN(z, ww); } /** * Returns the logarithm of w to the given base. If the base is not specified, returns * the natural logarithm of w. There is one branch cut, from 0 along the negative real * axis to -∞, continuous from above. * * @param w * @param b * @return logbw */ public static PyComplex log(PyObject w, PyObject b) { PyComplex ww = complexFromPyObject(w), bb = complexFromPyObject(b), z; double u = ww.real, v = ww.imag, br = bb.real, bi = bb.imag, x, y; // Natural log of w is (x,y) x = logHypot(u, v); y = Math.atan2(v, u); if (bi != 0. || br <= 0.) { // Complex or negative real base requires complex log: general case. PyComplex lnb = log(bb); z = (PyComplex)(new PyComplex(x, y)).__div__(lnb); } else { // Real positive base: frequent case. (b = inf or nan ends up here too.) double lnb = Math.log(br); z = new PyComplex(x / lnb, y / lnb); } return exceptNaN(z, ww); } /** * Helper function for the log of a complex number, dealing with the log magnitude, and without * intermediate overflow or underflow. It returns ln r, where r2 = * u2+v2. To do this it computes * ½ln(u2+v2). Special cases are handled as follows: *

    *
  • if u or v is NaN, it returns NaN
  • *
  • if u or v is infinite, it returns positive infinity
  • *
  • if u and v are both zero, it raises a ValueError
  • *
* We have this function instead of Math.log(Math.hypot(u,v)) because a valid * result is still possible even when hypot(u,v) overflows, and because there's no * point in taking a square root when a log is to follow. * * @param u * @param v * @return ½ln(u2+v2) */ private static double logHypot(double u, double v) { if (Double.isInfinite(u) || Double.isInfinite(v)) { return Double.POSITIVE_INFINITY; } else { // Cannot overflow, but if u=v=0 will return -inf. int scale = 0, ue = Math.getExponent(u), ve = Math.getExponent(v); double lnr; if (ue < -511 && ve < -511) { // Both u and v are too small to square, or zero. (Just one would be ok.) scale = 600; } else if (ue > 510 || ve > 510) { // One of these is too big to square and double (or is nan or inf). scale = -600; } if (scale == 0) { // Normal case: there is no risk of overflow or log of zero. lnr = 0.5 * Math.log(u * u + v * v); } else { // We must work with scaled values, us = u * 2**n etc.. double us = Math.scalb(u, scale); double vs = Math.scalb(v, scale); // rs**2 = r**2 * 2**2n double rs2 = us * us + vs * vs; // So ln(r) = ln(u**2+v**2)/2 = ln(us**2+vs**2)/2 - n ln(2) lnr = 0.5 * Math.log(rs2) - scale * math.LN2; } // (u,v) = 0 leads to ln(r) = -inf, but that's a domain error if (lnr == Double.NEGATIVE_INFINITY) { throw math.mathDomainError(); } else { return lnr; } } } /** * Return the sine of z. * * @param z * @return sin z */ public static PyComplex sin(PyObject z) { return sinOrSinh(complexFromPyObject(z), false); } /** * Return the hyperbolic sine of z. * * @param z * @return sinh z */ public static PyComplex sinh(PyObject z) { return sinOrSinh(complexFromPyObject(z), true); } /** * Helper to compute either sin z or sinh z. * * @param z * @param h true for sinh, false for sin. * @return sinh z or sin z. */ private static PyComplex sinOrSinh(PyComplex z, boolean h) { double x, y, u, v; PyComplex w; if (h) { // We compute w = sinh(z). Let w = u + iv and z = x + iy. x = z.real; y = z.imag; // Then the function body computes sinh(x+iy), according to: // u = sinh(x) cos(y), // v = cosh(x) sin(y), // And we return w = u + iv. } else { // We compute w = sin(z). Unusually, let z = y - ix, so x + iy = iz. y = z.real; x = -z.imag; // Then as before, the function body computes sinh(x+iy) = sinh(iz) = i sin(z), // but we finally return w = v - iu = sin(z). } if (y == 0.) { // Real argument for sinh (or imaginary for sin): use real library. u = math.sinh(x); // This will raise a range error on overflow. // v follows the sign of y (which could be -0.0). v = y; } else if (x == 0.) { // Imaginary argument for sinh (or real for sin): imaginary result at this point. v = Math.sin(y); // u follows sign of x (which could be -0.0). u = x; } else { // The trig calls will not throw, although if y is infinite, they return nan. double cosy = Math.cos(y), siny = Math.sin(y), absx = Math.abs(x); if (absx == Double.POSITIVE_INFINITY) { if (!Double.isNaN(cosy)) { // w = (inf,inf), but "rotated" by the direction cosines. u = x * cosy; v = absx * siny; } else { // Provisionally w = (inf,nan), which will raise domain error if y!=nan. u = x; v = Double.NaN; } } else if (absx > ATLEAST_27LN2) { // Use 0.5*e**x approximation. This is also the region where we risk overflow. double r = Math.exp(absx - 2.); // r approximates 2cosh(x)/e**2: multiply in this order to avoid inf: v = r * siny * HALF_E2; // r approximates 2sinh(|x|)/e**2: put back the proper sign of x in passing. u = Math.copySign(r, x) * cosy * HALF_E2; if (Double.isInfinite(u) || Double.isInfinite(v)) { // A finite x gave rise to an infinite u or v. throw math.mathRangeError(); } } else { // Normal case, without risk of overflow. u = Math.sinh(x) * cosy; v = Math.cosh(x) * siny; } } // Compose the result w according to whether we're computing sin(z) or sinh(z). if (h) { w = new PyComplex(u, v); // w = u + iv = sinh(x+iy). } else { w = new PyComplex(v, -u); // w = v - iu = sin(y-ix) = sin(z) } // If that generated a nan, and there wasn't one in the argument, raise a domain error. return exceptNaN(w, z); } /** * Calculate z = x+iy, such that z2 = w. In taking the square roots to * get x and y, we choose to have x≥0 always, and y the same sign * as v. * * @param w to square-root * @return w½ */ public static PyComplex sqrt(PyObject w) { /* * All the difficult parts are written for the first quadrant only (+,+), then the true sign * of the parts of w are factored in at the end, by flipping the result around the * diagonals. */ PyComplex ww = complexFromPyObject(w); double u = Math.abs(ww.real), v = Math.abs(ww.imag), x, y; if (Double.isInfinite(u)) { // Special cases: u = inf x = Double.POSITIVE_INFINITY; y = (Double.isNaN(v) || Double.isInfinite(v)) ? v : 0.; } else if (Double.isInfinite(v)) { // Special cases: v = inf, u != inf x = y = Double.POSITIVE_INFINITY; } else if (Double.isNaN(u)) { // In the remaining cases, u == nan infects all. x = y = u; } else { if (v == 0.) { // Pure real (and positive since in first quadrant). x = (u == 0.) ? 0. : Math.sqrt(u); y = 0.; } else if (u == 0.) { // Pure imaginary, and v is positive. x = y = ROOT_HALF * Math.sqrt(v); } else { /* * Let w = u + iv = 2a + 2ib, and define s**2 = a**2 + b**2. Then z = x + iy is * computed as x**2 = s + a, and y = b /x. Most of the logic here is about managing * the scaling. */ int ue = Math.getExponent(u), ve = Math.getExponent(v); int diff = ue - ve; if (diff > 27) { // u is so much bigger than v we can ignore v in the square: s = u/2. x = Math.sqrt(u); } else if (diff < -27) { // v is so much bigger than u we can ignore u in the square: s = v/2. if (ve >= Double.MAX_EXPONENT) { x = Math.sqrt(0.5 * u + 0.5 * v); // Avoid overflow in u+v } else { x = Math.sqrt(0.5 * (u + v)); } } else { /* * Use the full-fat formula: s = Math.sqrt(a * a + b * b). During calculation, * we will be squaring the components, so we scale by 2**n (small values up and * large values down). */ double s, a, b; final int LARGE = 510; // 1.999... * 2**LARGE is safe to square and double final int SMALL = -510; // 1.0 * 2**(SMALL-1) may squared with full precision final int SCALE = 600; // EVEN and > (52+SMALL-Double.MIN_EXPONENT) int n = 0; if (ue > LARGE || ve > LARGE) { // One of these is too big to square without overflow. a = Math.scalb(u, -(SCALE + 1)); // a = (u/2) * 2**n b = Math.scalb(v, -(SCALE + 1)); n = -SCALE; } else if (ue < SMALL && ve < SMALL) { // Both of these are too small to square without loss of bits. a = Math.scalb(u, SCALE - 1); // a = (u/2) * 2**n b = Math.scalb(v, SCALE - 1); n = SCALE; } else { a = 0.5 * u; // a = u/2 b = 0.5 * v; } s = Math.sqrt(a * a + b * b); x = Math.sqrt(s + a); // Restore x through the square root of the scale 2**(-n/2) if (n != 0) { x = Math.scalb(x, -n / 2); } } // Finally, use y = v/2x y = v / (x + x); } } // Flip according to the signs of the components of w. if (ww.real < 0.) { return new PyComplex(y, Math.copySign(x, ww.imag)); } else { return new PyComplex(x, Math.copySign(y, ww.imag)); } } /** * Return the tangent of z. * * @param z * @return tan z */ public static PyComplex tan(PyObject z) { return tanOrTanh(complexFromPyObject(z), false); } /** * Return the hyperbolic tangent of z. * * @param z * @return tanh z */ public static PyComplex tanh(PyObject z) { return tanOrTanh(complexFromPyObject(z), true); } /** * Helper to compute either tan z or tanh z. The expression used is: *

* tanh(x+iy) = (sinh x cosh x + i sin y cos y) / * (sinh2x + cos2y) *

* A simplification is made for x sufficiently large that e2|x|≫1 that * deals satisfactorily with large or infinite x. When computing tan, we evaluate * i tan iz instead, and the approximation applies to * e2|y|≫1. * * @param z * @param h true to compute tanh z, false to compute tan * z. * @return tan or tanh z */ private static PyComplex tanOrTanh(PyComplex z, boolean h) { double x, y, u, v, s; PyComplex w; if (h) { // We compute w = tanh(z). Let w = u + iv and z = x + iy. x = z.real; y = z.imag; // Then the function body computes tanh(x+iy), according to: // s = sinh**2 x + cos**2 y // u = sinh x cosh x / s, // v = sin y cos y / s, // And we return w = u + iv. } else { // We compute w = tan(z). Unusually, let z = y - ix, so x + iy = iz. y = z.real; x = -z.imag; // Then the function body computes tanh(x+iy) = tanh(iz) = i tan(z) as before, // but we finally return w = v - iu = tan(z). } if (y == 0.) { // Real argument for tanh (or imaginary for tan). u = Math.tanh(x); // v is zero but follows the sign of y (which could be -0.0). v = y; } else if (x == 0. && !Double.isNaN(y)) { // Imaginary argument for tanh (or real for tan): imaginary result at this point. v = Math.tan(y); // May raise domain error // u is zero but follows sign of x (which could be -0.0). u = x; } else { // The trig calls will not throw, although if y is infinite, they return nan. double cosy = Math.cos(y), siny = Math.sin(y), absx = Math.abs(x); if (absx > ATLEAST_27LN2) { // e**2x is much greater than 1: exponential approximation to sinh and cosh. s = 0.25 * Math.exp(2 * absx); u = Math.copySign(1., x); if (s == Double.POSITIVE_INFINITY) { // Either x is inf or 2x is large enough to overflow exp(). v=0, but signed: v = Math.copySign(0., siny * cosy); } else { v = siny * cosy / s; } } else { // Normal case: possible overflow in s near (x,y) = (0,pi/2) is harmless. double sinhx = Math.sinh(x), coshx = Math.cosh(x); s = sinhx * sinhx + cosy * cosy; u = sinhx * coshx / s; v = siny * cosy / s; } } // Compose the result w according to whether we're computing tan(z) or tanh(z). if (h) { w = new PyComplex(u, v); // w = u + iv = tanh(x+iy). } else { w = new PyComplex(v, -u); // w = v - iu = tan(y-ix) = tan(z) } // If that generated a nan, and there wasn't one in the argument, raise a domain error. return exceptNaN(w, z); } /** * Turn a NaN result into a thrown ValueError, a math domain error, if * the original argument was not itself NaN. A PyComplex is a * NaN if either component is a NaN. * * @param result to return (if we return) * @param arg to include in check * @return result if arg was NaN or result was not * NaN * @throws PyException {@code ValueError} if result was NaN and * arg was not NaN */ private static PyComplex exceptNaN(PyComplex result, PyComplex arg) throws PyException { if ((Double.isNaN(result.real) || Double.isNaN(result.imag)) && !(Double.isNaN(arg.real) || Double.isNaN(arg.imag))) { throw math.mathDomainError(); } else { return result; } } /** * Raise ValueError if result is a NaN, but neither * a nor b is NaN. Same as * {@link #exceptNaN(PyComplex, PyComplex)}. */ private static PyComplex exceptNaN(PyComplex result, double a, double b) throws PyException { if ((Double.isNaN(result.real) || Double.isNaN(result.imag)) && !(Double.isNaN(a) || Double.isNaN(b))) { throw math.mathDomainError(); } else { return result; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy