All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.testng.internal.Graph Maven / Gradle / Ivy

There is a newer version: 7.10.1
Show newest version
package org.testng.internal;

import org.testng.TestNGException;
import org.testng.collections.Lists;
import org.testng.collections.Maps;

import java.util.Collection;
import java.util.Comparator;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;
/**
 * Simple graph class to implement topological sort (used to sort methods based on what groups they
 * depend on).
 *
 * @author Cedric Beust, Aug 19, 2004
 */
public class Graph {
  private static boolean m_verbose = false;
  private Map> m_nodes = Maps.newLinkedHashMap();
  private List m_strictlySortedNodes = null;
  private final Comparator> comparator;

  //  A map of nodes that are not the predecessors of any node
  // (not needed for the algorithm but convenient to calculate
  // the parallel/sequential lists in TestNG).
  private Map> m_independentNodes = null;

  public Graph(Comparator> comparator) {
    this.comparator = comparator;
  }

  public void addNode(T tm) {
    ppp("ADDING NODE " + tm + " " + tm.hashCode());
    m_nodes.put(tm, new Node<>(tm));
    // Initially, all the nodes are put in the independent list as well
  }

  public Set getPredecessors(T node) {
    return findNode(node).getPredecessors().keySet();
  }

  public boolean isIndependent(T object) {
    return m_independentNodes.containsKey(object);
  }

  private Node findNode(T object) {
    return m_nodes.get(object);
  }

  public void addPredecessor(T tm, T predecessor) {
    Node node = findNode(tm);
    if (null == node) {
      throw new TestNGException("Non-existing node: " + tm);
    } else {
      node.addPredecessor(predecessor);
      addNeighbor(tm, predecessor);
      // Remove these two nodes from the independent list
      initializeIndependentNodes();
      m_independentNodes.remove(predecessor);
      m_independentNodes.remove(tm);
      ppp("  REMOVED " + predecessor + " FROM INDEPENDENT OBJECTS");
    }
  }

  private void addNeighbor(T tm, T predecessor) {
    findNode(tm).addNeighbor(findNode(predecessor));
  }

  private Collection> getNodes() {
    return m_nodes.values();
  }

  /** @return All the nodes that don't have any order with each other. */
  public Set getIndependentNodes() {
    return m_independentNodes.keySet();
  }

  /** @return All the nodes that have an order with each other, sorted in one of the valid sorts. */
  public List getStrictlySortedNodes() {
    return m_strictlySortedNodes;
  }

  public void topologicalSort() {
    ppp("================ SORTING");
    m_strictlySortedNodes = Lists.newArrayList();
    initializeIndependentNodes();

    //
    // Clone the list of nodes but only keep those that are
    // not independent.
    //
    List> nodes2 = Lists.newArrayList();
    for (Node n : getNodes()) {
      if (!isIndependent(n.getObject())) {
        ppp("ADDING FOR SORT: " + n.getObject());
        nodes2.add(n.clone());
      } else {
        ppp("SKIPPING INDEPENDENT NODE " + n);
      }
    }

    //
    // Sort the nodes alphabetically to make sure that methods of the same class
    // get run close to each other as much as possible
    //
    nodes2.sort(comparator);

    //
    // Sort
    //
    while (!nodes2.isEmpty()) {

      //
      // Find all the nodes that don't have any predecessors, add
      // them to the result and mark them for removal
      //
      Node node = findNodeWithNoPredecessors(nodes2);
      if (null == node) {
        List cycle = new Tarjan<>(this, nodes2.get(0).getObject()).getCycle();
        StringBuilder sb = new StringBuilder();
        sb.append("The following methods have cyclic dependencies:\n");
        for (T m : cycle) {
          sb.append(m).append("\n");
        }
        throw new TestNGException(sb.toString());
      } else {
        m_strictlySortedNodes.add(node.getObject());
        removeFromNodes(nodes2, node);
      }
    }

    ppp("=============== DONE SORTING");
    if (m_verbose) {
      dumpSortedNodes();
    }
  }

  private void initializeIndependentNodes() {
    if (null == m_independentNodes) {
      List> list = Lists.newArrayList(m_nodes.values());
      // Ideally, we should not have to sort this. However, due to a bug where it treats all the
      // methods as
      // dependent nodes.
      list.sort(comparator);

      m_independentNodes = Maps.newLinkedHashMap();
      for (Node node : list) {
        m_independentNodes.put(node.getObject(), node);
      }
    }
  }

  private void dumpSortedNodes() {
    System.out.println("====== SORTED NODES");
    for (T n : m_strictlySortedNodes) {
      System.out.println("              " + n);
    }
    System.out.println("====== END SORTED NODES");
  }

  /**
   * Remove a node from a list of nodes and update the list of predecessors for all the remaining
   * nodes.
   */
  private void removeFromNodes(List> nodes, Node node) {
    nodes.remove(node);
    for (Node n : nodes) {
      n.removePredecessor(node.getObject());
    }
  }

  private static void ppp(String s) {
    if (m_verbose) {
      System.out.println("[Graph] " + s);
    }
  }

  private Node findNodeWithNoPredecessors(List> nodes) {
    for (Node n : nodes) {
      if (!n.hasPredecessors()) {
        return n;
      }
    }

    return null;
  }

  /**
   * @param o - The predecessor
   * @return A list of all the predecessors for o
   */
  public List findPredecessors(T o) {
    // Locate the node
    Node node = findNode(o);
    if (null == node) {
      // This can happen if an interceptor returned new methods
      return Lists.newArrayList();
    }

    // If we found the node, use breadth first search to find all
    // all of the predecessors of o.  "result" is the growing list
    // of all predecessors.  "visited" is the set of items we've
    // already encountered.  "queue" is the queue of items whose
    // predecessors we haven't yet explored.

    LinkedList result = new LinkedList<>();
    Set visited = new HashSet<>();
    LinkedList queue = new LinkedList<>();
    visited.add(o);
    queue.addLast(o);

    while (!queue.isEmpty()) {
      for (T obj : getPredecessors(queue.removeFirst())) {
        if (!visited.contains(obj)) {
          visited.add(obj);
          queue.addLast(obj);
          result.addFirst(obj);
        }
      }
    }

    return result;
  }

  @Override
  public String toString() {
    StringBuilder result = new StringBuilder("[Graph ");
    for (T node : m_nodes.keySet()) {
      result.append(findNode(node)).append(" ");
    }
    result.append("]");

    return result.toString();
  }

  /////
  // class Node
  //
  public static class Node {
    private T m_object;
    private Map m_predecessors = Maps.newHashMap();

    public Node(T tm) {
      m_object = tm;
    }

    private Set> m_neighbors = new HashSet<>();

    public void addNeighbor(Node neighbor) {
      m_neighbors.add(neighbor);
    }

    @Override
    public Node clone() {
      Node result = new Node<>(m_object);
      for (T pred : m_predecessors.values()) {
        result.addPredecessor(pred);
      }
      return result;
    }

    public T getObject() {
      return m_object;
    }

    public Map getPredecessors() {
      return m_predecessors;
    }

    /** @return true if this predecessor was found and removed */
    public boolean removePredecessor(T o) {
      boolean result = false;

      T pred = m_predecessors.get(o);
      if (null != pred) {
        result = null != m_predecessors.remove(o);
        if (result) {
          ppp("  REMOVED PRED " + o + " FROM NODE " + m_object);
        } else {
          ppp("  FAILED TO REMOVE PRED " + o + " FROM NODE " + m_object);
        }
      }

      return result;
    }

    @Override
    public String toString() {
      StringBuilder sb = new StringBuilder("[Node:" + m_object);
      sb.append("  pred:");
      for (T o : m_predecessors.values()) {
        sb.append(" ").append(o);
      }
      sb.append("]");
      return sb.toString();
    }

    public void addPredecessor(T tm) {
      ppp("  ADDING PREDECESSOR FOR " + m_object + " ==> " + tm);
      m_predecessors.put(tm, tm);
    }

    public boolean hasPredecessors() {
      return m_predecessors.size() > 0;
    }
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy