Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see .
package org.uma.jmetal.experiment;
import org.uma.jmetal.algorithm.Algorithm;
import org.uma.jmetal.algorithm.multiobjective.nsgaii.NSGAIIBuilder;
import org.uma.jmetal.operator.impl.crossover.SBXCrossover;
import org.uma.jmetal.operator.impl.mutation.PolynomialMutation;
import org.uma.jmetal.problem.Problem;
import org.uma.jmetal.problem.multiobjective.zdt.*;
import org.uma.jmetal.qualityindicator.impl.*;
import org.uma.jmetal.qualityindicator.impl.hypervolume.PISAHypervolume;
import org.uma.jmetal.solution.DoubleSolution;
import org.uma.jmetal.util.JMetalException;
import org.uma.jmetal.util.experiment.Experiment;
import org.uma.jmetal.util.experiment.ExperimentBuilder;
import org.uma.jmetal.util.experiment.component.*;
import org.uma.jmetal.util.experiment.util.ExperimentAlgorithm;
import org.uma.jmetal.util.experiment.util.ExperimentProblem;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* Example of experimental study based on solving the ZDT problems with four versions of NSGA-II, each
* of them applying a different crossover probability (from 0.7 to 1.0).
*
* This experiment assumes that the reference Pareto front are not known, so the names of files containing
* them and the directory where they are located must be specified.
*
* Six quality indicators are used for performance assessment.
*
* The steps to carry out the experiment are:
* 1. Configure the experiment
* 2. Execute the algorithms
* 3. Generate the reference Pareto fronts
* 4. Compute the quality indicators
* 5. Generate Latex tables reporting means and medians
* 6. Generate Latex tables with the result of applying the Wilcoxon Rank Sum Test
* 7. Generate Latex tables with the ranking obtained by applying the Friedman test
* 8. Generate R scripts to obtain boxplots
*
* @author Antonio J. Nebro
*/
public class NSGAIIStudy2 {
private static final int INDEPENDENT_RUNS = 25 ;
public static void main(String[] args) throws IOException {
if (args.length != 1) {
throw new JMetalException("Needed arguments: experimentBaseDirectory") ;
}
String experimentBaseDirectory = args[0] ;
List> problemList = new ArrayList<>();
problemList.add(new ExperimentProblem<>(new ZDT1()));
problemList.add(new ExperimentProblem<>(new ZDT2()));
problemList.add(new ExperimentProblem<>(new ZDT3()));
problemList.add(new ExperimentProblem<>(new ZDT4()));
problemList.add(new ExperimentProblem<>(new ZDT6()));
List>> algorithmList =
configureAlgorithmList(problemList);
Experiment> experiment =
new ExperimentBuilder>("NSGAIIStudy2")
.setAlgorithmList(algorithmList)
.setProblemList(problemList)
.setExperimentBaseDirectory(experimentBaseDirectory)
.setOutputParetoFrontFileName("FUN")
.setOutputParetoSetFileName("VAR")
.setReferenceFrontDirectory(experimentBaseDirectory+"/referenceFronts")
.setIndicatorList(Arrays.asList(
new Epsilon(), new Spread(), new GenerationalDistance(),
new PISAHypervolume(),
new InvertedGenerationalDistance(), new InvertedGenerationalDistancePlus()))
.setIndependentRuns(INDEPENDENT_RUNS)
.setNumberOfCores(8)
.build();
new ExecuteAlgorithms<>(experiment).run();
new GenerateReferenceParetoSetAndFrontFromDoubleSolutions(experiment).run();
new ComputeQualityIndicators<>(experiment).run() ;
new GenerateLatexTablesWithStatistics(experiment).run() ;
new GenerateWilcoxonTestTablesWithR<>(experiment).run() ;
new GenerateFriedmanTestTables<>(experiment).run();
new GenerateBoxplotsWithR<>(experiment).setRows(3).setColumns(3).run() ;
}
/**
* The algorithm list is composed of pairs {@link Algorithm} + {@link Problem} which form part of
* a {@link ExperimentAlgorithm}, which is a decorator for class {@link Algorithm}. The {@link
* ExperimentAlgorithm} has an optional tag component, that can be set as it is shown in this example,
* where four variants of a same algorithm are defined.
*/
static List>> configureAlgorithmList(
List> problemList) {
List>> algorithms = new ArrayList<>();
for (int i = 0; i < problemList.size(); i++) {
Algorithm> algorithm = new NSGAIIBuilder<>(
problemList.get(i).getProblem(),
new SBXCrossover(1.0, 5),
new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 10.0))
.setMaxEvaluations(25000)
.setPopulationSize(100)
.build();
algorithms.add(new ExperimentAlgorithm<>(algorithm, "NSGAIIa", problemList.get(i).getTag()));
}
for (int i = 0; i < problemList.size(); i++) {
Algorithm> algorithm = new NSGAIIBuilder<>(
problemList.get(i).getProblem(),
new SBXCrossover(1.0, 20.0),
new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 20.0))
.setMaxEvaluations(25000)
.setPopulationSize(100)
.build();
algorithms.add(new ExperimentAlgorithm<>(algorithm, "NSGAIIb", problemList.get(i).getTag()));
}
for (int i = 0; i < problemList.size(); i++) {
Algorithm> algorithm = new NSGAIIBuilder<>(problemList.get(i).getProblem(), new SBXCrossover(1.0, 40.0),
new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 40.0))
.setMaxEvaluations(25000)
.setPopulationSize(100)
.build();
algorithms.add(new ExperimentAlgorithm<>(algorithm, "NSGAIIc", problemList.get(i).getTag()));
}
for (int i = 0; i < problemList.size(); i++) {
Algorithm> algorithm = new NSGAIIBuilder<>(problemList.get(i).getProblem(), new SBXCrossover(1.0, 80.0),
new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 80.0))
.setMaxEvaluations(25000)
.setPopulationSize(100)
.build();
algorithms.add(new ExperimentAlgorithm<>(algorithm, "NSGAIId", problemList.get(i).getTag()));
}
return algorithms;
}
}