
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ImageObjectDetectionResponse.kt Maven / Gradle / Ivy
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.azurenative.machinelearningservices.kotlin.outputs
import kotlin.Double
import kotlin.String
import kotlin.Suppress
import kotlin.collections.List
/**
* Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
* bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
* @property limitSettings [Required] Limit settings for the AutoML job.
* @property logVerbosity Log verbosity for the job.
* @property modelSettings Settings used for training the model.
* @property primaryMetric Primary metric to optimize for this task.
* @property searchSpace Search space for sampling different combinations of models and their hyperparameters.
* @property sweepSettings Model sweeping and hyperparameter sweeping related settings.
* @property targetColumnName Target column name: This is prediction values column.
* Also known as label column name in context of classification tasks.
* @property taskType AutoMLJob Task type.
* Expected value is 'ImageObjectDetection'.
* @property trainingData [Required] Training data input.
* @property validationData Validation data inputs.
* @property validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
* Values between (0.0 , 1.0)
* Applied when validation dataset is not provided.
*/
public data class ImageObjectDetectionResponse(
public val limitSettings: ImageLimitSettingsResponse,
public val logVerbosity: String? = null,
public val modelSettings: ImageModelSettingsObjectDetectionResponse? = null,
public val primaryMetric: String? = null,
public val searchSpace: List? = null,
public val sweepSettings: ImageSweepSettingsResponse? = null,
public val targetColumnName: String? = null,
public val taskType: String,
public val trainingData: MLTableJobInputResponse,
public val validationData: MLTableJobInputResponse? = null,
public val validationDataSize: Double? = null,
) {
public companion object {
public fun toKotlin(javaType: com.pulumi.azurenative.machinelearningservices.outputs.ImageObjectDetectionResponse): ImageObjectDetectionResponse = ImageObjectDetectionResponse(
limitSettings = javaType.limitSettings().let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ImageLimitSettingsResponse.Companion.toKotlin(args0)
}),
logVerbosity = javaType.logVerbosity().map({ args0 -> args0 }).orElse(null),
modelSettings = javaType.modelSettings().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ImageModelSettingsObjectDetectionResponse.Companion.toKotlin(args0)
})
}).orElse(null),
primaryMetric = javaType.primaryMetric().map({ args0 -> args0 }).orElse(null),
searchSpace = javaType.searchSpace().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ImageModelDistributionSettingsObjectDetectionResponse.Companion.toKotlin(args0)
})
}),
sweepSettings = javaType.sweepSettings().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ImageSweepSettingsResponse.Companion.toKotlin(args0)
})
}).orElse(null),
targetColumnName = javaType.targetColumnName().map({ args0 -> args0 }).orElse(null),
taskType = javaType.taskType(),
trainingData = javaType.trainingData().let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.MLTableJobInputResponse.Companion.toKotlin(args0)
}),
validationData = javaType.validationData().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.MLTableJobInputResponse.Companion.toKotlin(args0)
})
}).orElse(null),
validationDataSize = javaType.validationDataSize().map({ args0 -> args0 }).orElse(null),
)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy