
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.TableVerticalFeaturizationSettingsResponse.kt Maven / Gradle / Ivy
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.azurenative.machinelearningservices.kotlin.outputs
import kotlin.Boolean
import kotlin.String
import kotlin.Suppress
import kotlin.collections.List
import kotlin.collections.Map
/**
* Featurization Configuration.
* @property blockedTransformers These transformers shall not be used in featurization.
* @property columnNameAndTypes Dictionary of column name and its type (int, float, string, datetime etc).
* @property datasetLanguage Dataset language, useful for the text data.
* @property enableDnnFeaturization Determines whether to use Dnn based featurizers for data featurization.
* @property mode Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
* If 'Off' is selected then no featurization is done.
* If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
* @property transformerParams User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor.
*/
public data class TableVerticalFeaturizationSettingsResponse(
public val blockedTransformers: List? = null,
public val columnNameAndTypes: Map? = null,
public val datasetLanguage: String? = null,
public val enableDnnFeaturization: Boolean? = null,
public val mode: String? = null,
public val transformerParams: Map>? = null,
) {
public companion object {
public fun toKotlin(javaType: com.pulumi.azurenative.machinelearningservices.outputs.TableVerticalFeaturizationSettingsResponse): TableVerticalFeaturizationSettingsResponse = TableVerticalFeaturizationSettingsResponse(
blockedTransformers = javaType.blockedTransformers().map({ args0 -> args0 }),
columnNameAndTypes = javaType.columnNameAndTypes().map({ args0 ->
args0.key.to(args0.value)
}).toMap(),
datasetLanguage = javaType.datasetLanguage().map({ args0 -> args0 }).orElse(null),
enableDnnFeaturization = javaType.enableDnnFeaturization().map({ args0 -> args0 }).orElse(null),
mode = javaType.mode().map({ args0 -> args0 }).orElse(null),
transformerParams = javaType.transformerParams().map({ args0 ->
args0.key.to(
args0.value.map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ColumnTransformerResponse.Companion.toKotlin(args0)
})
}),
)
}).toMap(),
)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy