Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2018-2019 ABSA Group Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package za.co.absa.enceladus.examples
import org.apache.spark.sql.{DataFrame, SparkSession}
import za.co.absa.enceladus.conformance.CmdConfig
import za.co.absa.enceladus.conformance.interpreter.{DynamicInterpreter, FeatureSwitches}
import za.co.absa.enceladus.dao.{EnceladusDAO, EnceladusRestDAO}
import za.co.absa.enceladus.examples.interpreter.rules.custom.LPadCustomConformanceRule
import za.co.absa.enceladus.model.Dataset
import za.co.absa.enceladus.utils.time.TimeZoneNormalizer
object CustomRuleSample2 {
case class ExampleRow(id: Int, addPad: String, leave: String)
case class OutputRow(id: Int, addPad: String, leave: String, donePad: String)
implicit val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName("CustomRuleSample2")
.config("spark.sql.codegen.wholeStage", value = false)
.getOrCreate()
TimeZoneNormalizer.normalizeAll(spark) //normalize the timezone of JVM and the spark session
def main(args: Array[String]) {
// scalastyle:off magic.number
implicit val progArgs: CmdConfig = CmdConfig() // here we may need to specify some parameters (for certain rules)
implicit val dao: EnceladusDAO = EnceladusRestDAO // you may have to hard-code your own implementation here (if not working with menas)
val experimentalMR = true
val isCatalystWorkaroundEnabled = true
val enableCF: Boolean = false
val inputData: DataFrame = spark.createDataFrame(
Seq(
ExampleRow(1, "Hello world", "What a beautiful place"),
ExampleRow(4, "One Ring to rule them all", "One Ring to find them"),
ExampleRow(9, "ALREADY CAPS", "and this is lower-case")
))
val conformanceDef: Dataset = Dataset(
name = "Custom rule sample 2",
version = 0,
hdfsPath = "/a/b/c",
hdfsPublishPath = "/publish/a/b/c",
schemaName = "Not really used here",
schemaVersion = 9999,
conformance = List(
LPadCustomConformanceRule(order = 0,
outputColumn = "donePad",
controlCheckpoint = false,
inputColumn = "addPad",
len = 20,
pad = "~")
)
)
implicit val featureSwitches: FeatureSwitches = FeatureSwitches()
.setExperimentalMappingRuleEnabled(experimentalMR)
.setCatalystWorkaroundEnabled(isCatalystWorkaroundEnabled)
.setControlFrameworkEnabled(enableCF)
val outputData: DataFrame = DynamicInterpreter.interpret(conformanceDef, inputData)
outputData.show(false)
// scalastyle:on magic.number
}
}