All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by build with all dependencies

Search JAR files by class name

pact-jvm-consumer-groovy-v3_2.11 from group au.com.dius (version 3.0.4)

pact-jvm-consumer-groovy-v3 =========================== Groovy DSL for Pact JVM implementing V3 specification changes. ##Dependency The library is available on maven central using: * group-id = `au.com.dius` * artifact-id = `pact-jvm-consumer-groovy-v3_2.11` * version-id = `2.2.x` or `3.0.x` ##Usage Add the `pact-jvm-consumer-groovy-v3` library to your test class path. This provides a `PactMessageBuilder` class for you to use to define your pacts. If you are using gradle for your build, add it to your `build.gradle`: dependencies { testCompile 'au.com.dius:pact-jvm-consumer-groovy-v3_2.11:2.2.12' } ## Consumer test for a message consumer The `PactMessageBuilder` class provides a DSL for defining your message expectations. It works in much the same way as the `PactBuilder` class for Request-Response interactions. ### Step 1 - define the message expectations Create a test that uses the `PactMessageBuilder` to define a message expectation, and then call `run`. This will invoke the given closure with a message for each one defined in the pact. ```groovy def eventStream = new PactMessageBuilder().call { serviceConsumer 'messageConsumer' hasPactWith 'messageProducer' given 'order with id 10000004 exists' expectsToReceive 'an order confirmation message' withMetaData(type: 'OrderConfirmed') // Can define any key-value pairs here withContent(contentType: 'application/json') { type 'OrderConfirmed' audit { userCode 'messageService' } origin 'message-service' referenceId '10000004-2' timeSent: '2015-07-22T10:14:28+00:00' value { orderId '10000004' value '10.000000' fee '10.00' gst '15.00' } } } ``` ### Step 2 - call your message handler with the generated messages This example tests a message handler that gets messages from a Kafka topic. In this case the Pact message is wrapped as a Kafka `MessageAndMetadata`. ```groovy eventStream.run { Message message -> messageHandler.handleMessage(new MessageAndMetadata('topic', 1, new kafka.message.Message(message.contentsAsBytes()), 0, null, valueDecoder)) } ``` ### Step 3 - validate that the message was handled correctly ```groovy def order = orderRepository.getOrder('10000004') assert order.status == 'confirmed' assert order.value == 10.0 ``` ### Step 4 - Publish the pact file If the test was successful, a pact file would have been produced with the message from step 1.

Group: au.com.dius Artifact: pact-jvm-consumer-groovy-v3_2.11
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-consumer-groovy-v3_2.11
Group au.com.dius
Version 3.0.4
Last update 17. September 2015
Newest version Yes
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 9
Dependencies scala-logging_2.11, pact-jvm-consumer-groovy_2.11, groovy-all, json4s-native_2.11, pact-jvm-model-v3_2.11, slf4j-api, scala-xml_2.11, scala-library, json4s-jackson_2.11,
There are maybe transitive dependencies!

osgi-tests from group org.apache.axis2 (version 1.6.3)

Group: org.apache.axis2 Artifact: osgi-tests
Show source 
 

1 downloads
Artifact osgi-tests
Group org.apache.axis2
Version 1.6.3
Last update 27. June 2015
Newest version Yes
Organization not specified
URL http://axis.apache.org/axis2/java/core/
License not specified
Dependencies amount 1
Dependencies axis2-testutils,
There are maybe transitive dependencies!

axis2-parent from group org.apache.axis2 (version 1.6.3)

Axis2 is an effort to re-design and totally re-implement both Axis/Java and (eventually) Axis/C++ on a new architecture. Evolving from the now standard "handler chain" model which Axis1 pioneered, Axis2 is developing a more flexible pipeline architecture which can yet be managed and packaged in a more organized manner. This new design acknowledges the maturing of the Web services space in terms of new protocols such as WS-ReliableMessaging, WS-Security and WS-Addressing that are built on top of the base SOAP system. At the time Axis1 was designed, while it was fully expected that other protocols such as WS-ReliableMessaging would be built on top of it, there was not a proper extension architecture defined to enable clean composition of such layers. Thus, one of the key motivations for Axis2 is to provide a clean and simple environment for like Apache Sandesha and Apache WSS4J to layer on top of the base SOAP system. Another driving force for Axis2 as well as the move away from RPC oriented Web services towards more document-oriented, message style asynchronous service interactions. The Axis2 project is centered on a new representation for SOAP messages called AXIOM (AXIs Object Model). AXIOM consists of two parts: a complete XML Infoset representation and a SOAP Infoset representation on top of that. The XML Infoset representation provides a JDOM-like simple API but is built on a deferred model via a StAX-based (Streaming API for XML) pull parsing API. A key feature of AXIOM is that it allows one to stop building the XML tree and just access the pull stream directly; thus enabling both maximum flexibility and maximum performance. This approach allows us to support multiple levels of abstraction for consuming and offering Web services: using plain AXIOM, using generated code and statically data-bound data types and so on. At the time of Axis1's design, RPC-style, synchronous, request-response interactions were the order of the day for Web services. Today service interactions are much more message -oriented and exploit many different message exchange patterns. The Axis2 engine architecture is careful to not build in any assumptions of request-response patterns to ensure that it can be used easily to support arbitrary message exchange patterns.

Group: org.apache.axis2 Artifact: axis2-parent
Show all versions 
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact axis2-parent
Group org.apache.axis2
Version 1.6.3
Last update 27. June 2015
Newest version Yes
Organization not specified
URL http://axis.apache.org/axis2/java/core/
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

xapi-gwt-parent from group net.wetheinter (version 0.5)

This is the main aggregator for all gwt submodules. All gwt-specific code resides here. Submodules should avoid inheriting from each other unless necessary. This goes for maven structure and gwt.xml structure. The super module is where our jre emulation layer and super-source live; all modules should inherit super, and a minimum of other modules. Some modules, like injection, are fulfilling an api in the core module, and should be accessed only through core service interfaces. Other modules, like reflection, are capable of being standalone inherits, but can benefit from core utilities like injection, so, two (or more) .gwt.xml modules may be provided. As XApi nears 1.0, all submodules will be routinely stitched together into an uber-jar, in order to have a single jar with a single gwt module that can provide all of the services at once. Internal projects will never use the uber jar, to help maintain modularity, but external projects that want to use more than one service will certainly prefer inheriting one artifact, instead of twelve. When distributed in uber-jar format, it will likely be necessary for either the uber jar, or just xapi-gwt-api.jar to appear before gwt-dev on your compile-time classpath. If using gwt-maven-plugin, the gwtFirstOnClasspath option may become problematic. If so, we will provide a forked gwt-plugin to make sure our compiler enhancements are included in the build process. There is also work going on to make a super-source-everything plugin, which will use maven to find source files, and generate synthetic .gwt.xml for you, as part of an effort to create a wholly unified programming environment. In addition to java-to-javascript, we intend to compile java-to-java and possibly other languages, like go; imagine implementing gwt deferred binding to eliminate cross-platform differences between server environments, or operating systems, or versions of a platform, or anywhere else a core api needs to bind to multiple implementations, depending on the runtime environment.

Group: net.wetheinter Artifact: xapi-gwt-parent
Show all versions 
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact xapi-gwt-parent
Group net.wetheinter
Version 0.5
Last update 30. May 2015
Newest version Yes
Organization not specified
URL WeTheInter.net
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

mahout-eclipse-support from group org.apache.mahout (version 0.5)

Group: org.apache.mahout Artifact: mahout-eclipse-support
Show all versions Show source 
 

1 downloads
Artifact mahout-eclipse-support
Group org.apache.mahout
Version 0.5
Last update 28. May 2011
Newest version Yes
Organization not specified
URL Not specified
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

mahout-parent from group org.apache.mahout (version 0.3)

Mahout's goal is to build scalable machine learning libraries. With scalable we mean: Scalable to reasonably large data sets. Our core algorithms for clustering, classfication and batch based collaborative filtering are implemented on top of Apache Hadoop using the map/reduce paradigm. However we do not restrict contributions to Hadoop based implementations: Contributions that run on a single node or on a non-Hadoop cluster are welcome as well. The core libraries are highly optimized to allow for good performance also for non-distributed algorithms. Scalable to support your business case. Mahout is distributed under a commercially friendly Apache Software license. Scalable community. The goal of Mahout is to build a vibrant, responsive, diverse community to facilitate discussions not only on the project itself but also on potential use cases. Come to the mailing lists to find out more. Currently Mahout supports mainly four use cases: Recommendation mining takes users' behavior and from that tries to find items users might like. Clustering takes e.g. text documents and groups them into groups of topically related documents. Classification learns from exisiting categorized documents what documents of a specific category look like and is able to assign unlabelled documents to the (hopefully) correct category. Frequent itemset mining takes a set of item groups (terms in a query session, shopping cart content) and identifies, which individual items usually appear together.

Group: org.apache.mahout Artifact: mahout-parent
Show all versions 
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact mahout-parent
Group org.apache.mahout
Version 0.3
Last update 12. March 2010
Newest version Yes
Organization The Apache Software Foundation
URL http://lucene.apache.org/mahout
License The Apache Software License, Version 2.0
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

junit5 from group au.com.dius.pact.provider (version 4.2.0-beta.1)

# Pact Junit 5 Extension ## Dependency The library is available on maven central using: * group-id = `au.com.dius.pact.provider` * artifact-id = `junit5` * version-id = `4.1.x` ## Overview For writing Pact verification tests with JUnit 5, there is an JUnit 5 Invocation Context Provider that you can use with the `@TestTemplate` annotation. This will generate a test for each interaction found for the pact files for the provider. To use it, add the `@Provider` and one of the pact source annotations to your test class (as per a JUnit 4 test), then add a method annotated with `@TestTemplate` and `@ExtendWith(PactVerificationInvocationContextProvider.class)` that takes a `PactVerificationContext` parameter. You will need to call `verifyInteraction()` on the context parameter in your test template method. For example: ```java @Provider("myAwesomeService") @PactFolder("pacts") public class ContractVerificationTest { @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void pactVerificationTestTemplate(PactVerificationContext context) { context.verifyInteraction(); } } ``` For details on the provider and pact source annotations, refer to the [Pact junit runner](../junit/README.md) docs. ## Test target You can set the test target (the object that defines the target of the test, which should point to your provider) on the `PactVerificationContext`, but you need to do this in a before test method (annotated with `@BeforeEach`). There are three different test targets you can use: `HttpTestTarget`, `HttpsTestTarget` and `MessageTestTarget`. For example: ```java @BeforeEach void before(PactVerificationContext context) { context.setTarget(HttpTestTarget.fromUrl(new URL(myProviderUrl))); // or something like // context.setTarget(new HttpTestTarget("localhost", myProviderPort, "/")); } ``` **Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least version 2.22.1 uses an isolated classpath. For example, configure it by adding the following to your POM: ```xml <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.22.1</version> <configuration> <useSystemClassLoader>false</useSystemClassLoader> </configuration> </plugin> ``` ## Provider State Methods Provider State Methods work in the same way as with JUnit 4 tests, refer to the [Pact junit runner](../junit/README.md) docs. ### Using multiple classes for the state change methods If you have a large number of state change methods, you can split things up by moving them to other classes. You will need to specify the additional classes on the test context in a `Before` method. Do this with the `withStateHandler` or `setStateHandlers` methods. See [StateAnnotationsOnAdditionalClassTest](https://github.com/DiUS/pact-jvm/blob/master/provider/junit5/src/test/java/au/com/dius/pact/provider/junit5/StateAnnotationsOnAdditionalClassTest.java) for an example. ## Modifying the requests before they are sent **Important Note:** You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! **NOTE: JUnit 5 tests do not use `@TargetRequestFilter`** Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Http and Https test targets support injecting the request that will executed into the test template method. You can then add things to the request before calling the `verifyInteraction()` method. For example to add a header: ```java @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void testTemplate(PactVerificationContext context, HttpRequest request) { // This will add a header to the request request.addHeader("X-Auth-Token", "1234"); context.verifyInteraction(); } ``` ## Objects that can be injected into the test methods You can inject the following objects into your test methods (just like the `PactVerificationContext`). They will be null if injected before the supported phase. | Object | Can be injected from phase | Description | | ------ | --------------- | ----------- | | PactVerificationContext | @BeforeEach | The context to use to execute the interaction test | | Pact | any | The Pact model for the test | | Interaction | any | The Interaction model for the test | | HttpRequest | @TestTemplate | The request that is going to be executed (only for HTTP and HTTPS targets) | | ProviderVerifier | @TestTemplate | The verifier instance that is used to verify the interaction | ## Allowing the test to pass when no pacts are found to verify (version 4.0.7+) By default, the test will fail with an exception if no pacts were found to verify. This can be overridden by adding the `@IgnoreNoPactsToVerify` annotation to the test class. For this to work, you test class will need to be able to receive null values for any of the injected parameters. ## Overriding the handling of a body data type **NOTE: version 4.1.3+** By default, bodies will be handled based on their content types. For binary contents, the bodies will be base64 encoded when written to the Pact file and then decoded again when the file is loaded. You can change this with an override property: `pact.content_type.override.<TYPE>.<SUBTYPE>=text|binary`. For instance, setting `pact.content_type.override.application.pdf=text` will treat PDF bodies as a text type and not encode/decode them. # Pending Pact Support (version 4.1.0 and later) If your Pact broker supports pending pacts, you can enable support for that by enabling that on your Pact broker annotation or with JVM system properties. You also need to provide the tags that will be published with your provider's verification results. The broker will then label any pacts found that don't have a successful verification result as pending. That way, if they fail verification, the verifier will ignore those failures and not fail the build. For example, with annotation: ```java @Provider("Activity Service") @PactBroker(host = "test.pactflow.io", tags = {"test"}, scheme = "https", enablePendingPacts = "true", providerTags = "master" ) public class PactJUnitTest { ``` You can also use the `pactbroker.enablePending` and `pactbroker.providerTags` JVM system properties. Then any pending pacts will not cause a build failure. # Work In Progress (WIP) Pact Support (version 4.1.5 and later) WIP pacts work in the same way as with JUnit 4 tests, refer to the [Pact junit runner](../junit/README.md) docs.

Group: au.com.dius.pact.provider Artifact: junit5
Show all versions Show documentation Show source 
 

0 downloads
Artifact junit5
Group au.com.dius.pact.provider
Version 4.2.0-beta.1
Last update 09. November 2020
Newest version Yes
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies junit-jupiter-api, support, provider,
There are maybe transitive dependencies!

provider from group au.com.dius.pact (version 4.2.0-beta.1)

Pact provider ============= sub project of https://github.com/DiUS/pact-jvm The pact provider is responsible for verifying that an API provider adheres to a number of pacts authored by its clients This library provides the basic tools required to automate the process, and should be usable on its own in many instances. Framework and build tool specific bindings will be provided in separate libraries that build on top of this core functionality. ### Provider State Before each interaction is executed, the provider under test will have the opportunity to enter a state. Generally the state maps to a set of fixture data for mocking out services that the provider is a consumer of (they will have their own pacts) The pact framework will instruct the test server to enter that state by sending: POST "${config.stateChangeUrl.url}/setup" { "state" : "${interaction.stateName}" } ### An example of running provider verification with junit This example uses Groovy, JUnit 4 and Hamcrest matchers to run the provider verification. As the provider service is a DropWizard application, it uses the DropwizardAppRule to startup the service before running any test. **Warning:** It only grabs the first interaction from the pact file with the consumer, where there could be many. (This could possibly be solved with a parameterized test) ```groovy class ReadmeExamplePactJVMProviderJUnitTest { @ClassRule public static final TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>( TestDropwizardApplication, ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml')) private static ProviderInfo serviceProvider private static Pact<RequestResponseInteraction> testConsumerPact private static ConsumerInfo consumer @BeforeClass static void setupProvider() { serviceProvider = new ProviderInfo('Dropwizard App') serviceProvider.setProtocol('http') serviceProvider.setHost('localhost') serviceProvider.setPort(8080) serviceProvider.setPath('/') consumer = new ConsumerInfo() consumer.setName('test_consumer') consumer.setPactSource(new UrlSource( ReadmeExamplePactJVMProviderJUnitTest.getResource('/pacts/zoo_app-animal_service.json').toString())) testConsumerPact = DefaultPactReader.INSTANCE.loadPact(consumer.getPactSource()) as Pact<RequestResponseInteraction> } @Test void runConsumerPacts() { // grab the first interaction from the pact with consumer Interaction interaction = testConsumerPact.interactions.get(0) // setup the verifier ProviderVerifier verifier = setupVerifier(interaction, serviceProvider, consumer) // setup any provider state // setup the client and interaction to fire against the provider ProviderClient client = new ProviderClient(serviceProvider, new HttpClientFactory()) Map<String, Object> failures = new HashMap<>() VerificationResult result = verifier.verifyResponseFromProvider(serviceProvider, interaction, interaction.getDescription(), failures, client) // normally assert all good, but in this example it will fail assertThat(failures, is(instanceOf(VerificationResult.Failed))) verifier.displayFailures(result) } private ProviderVerifier setupVerifier(Interaction interaction, ProviderInfo provider, ConsumerInfo consumer) { ProviderVerifier verifier = new ProviderVerifier() verifier.initialiseReporters(provider) verifier.reportVerificationForConsumer(consumer, provider, new UrlSource('http://example.example')) if (!interaction.getProviderStates().isEmpty()) { for (ProviderState providerState: interaction.getProviderStates()) { verifier.reportStateForInteraction(providerState.getName(), provider, consumer, true) } } verifier.reportInteractionDescription(interaction) return verifier } } ``` ### An example of running provider verification with spock This example uses groovy and spock to run the provider verification. Again the provider service is a DropWizard application, and is using the DropwizardAppRule to startup the service. This example runs all interactions using spocks Unroll feature ```groovy class ReadmeExamplePactJVMProviderSpockSpec extends Specification { @ClassRule @Shared TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(TestDropwizardApplication, ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml')) @Shared ProviderInfo serviceProvider ProviderVerifier verifier def setupSpec() { serviceProvider = new ProviderInfo('Dropwizard App') serviceProvider.protocol = 'http' serviceProvider.host = 'localhost' serviceProvider.port = 8080 serviceProvider.path = '/' serviceProvider.hasPactWith('zoo_app') { consumer -> consumer.pactSource = new FileSource(new File(ResourceHelpers.resourceFilePath('pacts/zoo_app-animal_service.json'))) } } def setup() { verifier = new ProviderVerifier() } def cleanup() { // cleanup provider state // ie. db.truncateAllTables() } def cleanupSpec() { // cleanup provider } @Unroll def "Provider Pact - With Consumer #consumer"() { expect: verifyConsumerPact(consumer) instanceof VerificationResult.Ok where: consumer << serviceProvider.consumers } private VerificationResult verifyConsumerPact(ConsumerInfo consumer) { verifier.initialiseReporters(serviceProvider) def result = verifier.runVerificationForConsumer([:], serviceProvider, consumer) if (result instanceof VerificationResult.Failed) { verifier.displayFailures([result]) } result } } ```

Group: au.com.dius.pact Artifact: provider
Show all versions Show documentation Show source 
 

0 downloads
Artifact provider
Group au.com.dius.pact
Version 4.2.0-beta.1
Last update 09. November 2020
Newest version Yes
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 7
Dependencies commons-io, httpclient, model, pactbroker, matchers, support, kotlin-result,
There are maybe transitive dependencies!

pact-jvm-server from group au.com.dius.pact (version 4.2.0-beta.1)

Pact server =========== The pact server is a stand-alone interactions recorder and verifier, aimed at clients that are non-JVM or non-Ruby based. The pact client for that platform will need to be implemented, but it only be responsible for generating the `JSON` interactions, running the tests and communicating with the server. The server implements a `JSON` `REST` Admin API with the following endpoints. / -> For diagnostics, currently returns a list of ports of the running mock servers. /create -> For initialising a test server and submitting the JSON interactions. It returns a port /complete -> For finalising and verifying the interactions with the server. It writes the `JSON` pact file to disk. /publish -> For publishing contracts. It takes a contract from disk and publishes it to the configured broker ## Running the server Pact server takes the following parameters: ``` Usage: pact-jvm-server [options] [port] port port to run on (defaults to 29999) --help prints this usage text -h <value> | --host <value> host to bind to (defaults to localhost) -l <value> | --mock-port-lower <value> lower bound to allocate mock ports (defaults to 20000) -u <value> | --mock-port-upper <value> upper bound to allocate mock ports (defaults to 40000) -d | --daemon run as a daemon process -v <value> | --pact-version <value> pact version to generate for (2 or 3) -k <value> | --keystore-path <value> Path to keystore -p <value> | --keystore-password <value> Keystore password -s <value> | --ssl-port <value> Ssl port the mock server should run on. lower and upper bounds are ignored -b <value> | --broker <value> The baseUrl of the broker to publish contracts to (for example https://organization.broker.com -t <value | --token <value> API token for authentication to the pact broker --debug run with debug logging ``` ### Using trust store Trust store can be used. However, it is limited to a single port for the time being. ### Using a distribution archive You can download a [distribution from maven central](http://search.maven.org/remotecontent?filepath=au/com/dius/pact/pact-jvm-server/4.1.0/). There is both a ZIP and TAR archive. Unpack it to a directory of choice and then run the script in the bin directory. ### Building a distribution bundle You can build an application bundle with gradle by running: $ ./gradlew :pact-jvm-server:installdist This will create an app bundle in `build/install/pact-jvm-server`. You can then execute it with: $ java -jar pact-jvm-server/build/install/pact-jvm-server/lib/pact-jvm-server-4.0.1.jar or with the generated bundle script file: $ pact-jvm-server/build/install/pact-jvm-server/bin/pact-jvm-server By default will run on port `29999` but a port number can be optionally supplied. ### Running it with docker You can use a docker image to execute the mock server as a docker container. $ docker run -d -p 8080:8080 -p 20000-20010:20000-20010 uglyog/pact-jvm-server This will run the main server on port 8080, and each created mock server on ports 20000-20010. You can map the ports to any you require. ## Life cycle The following actions are expected to occur * The client calls `/create` to initialise a server with the expected `JSON` interactions and state * The admin server will start a mock server on a random port and return the port number in the response * The client will execute its interaction tests against the mock server with the supplied port * Once finished, the client will call `/complete' on the Admin API, posting the port number * The pact server will verify the interactions and write the `JSON` `pact` file to disk under `/target` * The mock server running on the supplied port will be shutdown. * The client will call `/publish` to publish the created contract to the configured pact broker ## Endpoints ### /create The client will need `POST` to `/create` the generated `JSON` interactions, also providing a state as a query parameter and a path. For example: POST http://localhost:29999/create?state=NoUsers&path=/sub/ref/path '{ "provider": { "name": "Animal_Service"}, ... }' This will create a new running mock service provider on a randomly generated port. The port will be returned in the `201` response: { "port" : 34423 } But you can also reference the path from `/sub/ref/path` using the server port. The service will not strip the prefix path, but instead will use it as a differentiator. If your services do not have differences in the prefix of their path, then you will have to use the port method. ### /complete Once the client has finished running its tests against the mock server on the supplied port (in this example port `34423`) the client will need to `POST` to `/complete` the port number of the mock server that was used. For example: POST http://localhost:29999/complete '{ "port" : 34423 }' This will cause the Pact server to verify the interactions, shutdown the mock server running on that port and writing the pact `JSON` file to disk under the `target` directory. ### /publish Once all interactions have been tested the `/publish` endpoint can be called to publish the created pact to the pact broker For this it is required to run the pact-jvm-server with the -b parameter to configure the pact broker to publish the pacts to. Optionaly an authentication token can be used for authentication against the broker. For example: POST http://localhost:29999/publish '{ "consumer": "Zoo", "consumerVersion": "0.0.1", "provider": "Animal_Service" }' This will cause the Pact server to check for the pact `Zoo-Animal_Service.json` on disk under `target` and publish it to the configured pact broker. After a successful publish the pact will be removed from disk. ### / The `/` endpoint is for diagnostics and to check that the pact server is running. It will return all the currently running mock servers port numbers. For example: GET http://localhost:29999/ '{ "ports": [23443,43232] }'

Group: au.com.dius.pact Artifact: pact-jvm-server
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-server
Group au.com.dius.pact
Version 4.2.0-beta.1
Last update 09. November 2020
Newest version Yes
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

pact-jvm-server_2.12 from group au.com.dius (version 3.6.15)

Pact server =========== The pact server is a stand-alone interactions recorder and verifier, aimed at clients that are non-JVM or non-Ruby based. The pact client for that platform will need to be implemented, but it only be responsible for generating the `JSON` interactions, running the tests and communicating with the server. The server implements a `JSON` `REST` Admin API with the following endpoints. / -> For diagnostics, currently returns a list of ports of the running mock servers. /create -> For initialising a test server and submitting the JSON interactions. It returns a port /complete -> For finalising and verifying the interactions with the server. It writes the `JSON` pact file to disk. ## Running the server ### Versions 2.2.6+ Pact server takes the following parameters: ``` Usage: pact-jvm-server [options] [port] port port to run on (defaults to 29999) --help prints this usage text -h <value> | --host <value> host to bind to (defaults to localhost) -l <value> | --mock-port-lower <value> lower bound to allocate mock ports (defaults to 20000) -u <value> | --mock-port-upper <value> upper bound to allocate mock ports (defaults to 40000) -d | --daemon run as a daemon process -v <value> | --pact-version <value> pact version to generate for (2 or 3) -k <value> | --keystore-path <value> Path to keystore -p <value> | --keystore-password <value> Keystore password -s <value> | --ssl-port <value> Ssl port the mock server should run on. lower and upper bounds are ignored --debug run with debug logging ``` ### Using trust store 3.4.0+ Trust store can be used. However, it is limited to a single port for the time being. ### Prior to version 2.2.6 Pact server takes one optional parameter, the port number to listen on. If not provided, it will listen on 29999. It requires an active console to run. ### Using a distribution archive You can download a [distribution from maven central](http://search.maven.org/remotecontent?filepath=au/com/dius/pact-jvm-server_2.11/2.2.4/). There is both a ZIP and TAR archive. Unpack it to a directory of choice and then run the script in the bin directory. ### Building a distribution bundle You can build an application bundle with gradle by running (for 2.11 version): $ ./gradlew :pact-jvm-server_2.11:installdist This will create an app bundle in `build/2.11/install/pact-jvm-server_2.11`. You can then execute it with: $ java -jar pact-jvm-server/build/2.10/install/pact-jvm-server_2.11/lib/pact-jvm-server_2.11-3.2.11.jar or with the generated bundle script file: $ pact-jvm-server/build/2.11/install/pact-jvm-server_2.11/bin/pact-jvm-server_2.11 By default will run on port `29999` but a port number can be optionally supplied. ### Running it with docker You can use a docker image to execute the mock server as a docker container. $ docker run -d -p 8080:8080 -p 20000-20010:20000-20010 uglyog/pact-jvm-server This will run the main server on port 8080, and each created mock server on ports 20000-20010. You can map the ports to any you require. ## Life cycle The following actions are expected to occur * The client calls `/create` to initialise a server with the expected `JSON` interactions and state * The admin server will start a mock server on a random port and return the port number in the response * The client will execute its interaction tests against the mock server with the supplied port * Once finished, the client will call `/complete' on the Admin API, posting the port number * The pact server will verify the interactions and write the `JSON` `pact` file to disk under `/target` * The mock server running on the supplied port will be shutdown. ## Endpoints ### /create The client will need `POST` to `/create` the generated `JSON` interactions, also providing a state as a query parameter and a path. For example: POST http://localhost:29999/create?state=NoUsers&path=/sub/ref/path '{ "provider": { "name": "Animal_Service"}, ... }' This will create a new running mock service provider on a randomly generated port. The port will be returned in the `201` response: { "port" : 34423 } But you can also reference the path from `/sub/ref/path` using the server port. The service will not strip the prefix path, but instead will use it as a differentiator. If your services do not have differences in the prefix of their path, then you will have to use the port method. ### /complete Once the client has finished running its tests against the mock server on the supplied port (in this example port `34423`) the client will need to `POST` to `/complete` the port number of the mock server that was used. For example: POST http://localhost:29999/complete '{ "port" : 34423 }' This will cause the Pact server to verify the interactions, shutdown the mock server running on that port and writing the pact `JSON` file to disk under the `target` directory. ### / The `/` endpoint is for diagnostics and to check that the pact server is running. It will return all the currently running mock servers port numbers. For example: GET http://localhost:29999/ '{ "ports": [23443,43232] }'

Group: au.com.dius Artifact: pact-jvm-server_2.12
Show all versions Show documentation Show source 
 

2 downloads
Artifact pact-jvm-server_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Newest version Yes
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 4
Dependencies pact-jvm-consumer_2.12, logback-core, logback-classic, scopt_2.12,
There are maybe transitive dependencies!



Page 580 from 585 (items total 5845)


© 2018 Weber Informatics LLC