All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by false with all dependencies

Search JAR files by class name

bw-core from group com.github.burningwave (version 1.7.6)

Burningwave core is an advanced, free and open source Java library that contains THE MOST POWERFUL CLASSPATH SCANNER for criteria based classes search. It’s possible to search classes by every criteria that your immagination can made by using lambda expressions. Burningwave core scan engine is highly optimized using direct allocated ByteBuffers to avoid heap saturation; searches are executed in multithreading context and are not affected by “the issue of the same class loaded by different classloaders” (normally if you try to execute "isAssignableFrom" method on a same class loaded from different classloader it return false). This library is useful also for creating classes during runtime, facilitate the use of reflection and much more...

Group: com.github.burningwave Artifact: bw-core
Show all versions Show documentation Show source 
 

0 downloads
Artifact bw-core
Group com.github.burningwave
Version 1.7.6
Last update 30. December 2019
Organization not specified
URL https://github.com/burningwave/bw-core
License not specified
Dependencies amount 2
Dependencies slf4j-api, asm,
There are maybe transitive dependencies!

version-edit-plugin from group com.soerensen.maven.plugins (version 0.0.1)

This tool allows setting the version number of a specified dependency in a given Maven pom.xml file. All original comments and formatting will be kept. Usage example: mvn com.soerensen.maven.plugins:version-edit-plugin:1.0.1:setDependencyVersion -DpomFile="pom.xml" -Dgavtc="commons-io:commons-io:4.8.0" mvn com.soerensen.maven.plugins:version-edit-plugin:0.0.1:setPropertyDependencyVersion -DpropertyFile="test.property" -Dkey="junit_junit" -Dvalue="24.0.0" gavtc -> groupId:artifactId:version:type*:classifier* * optional Extra property: - noBackupFile (default:false), used to ignore the creation of a backup file.

Group: com.soerensen.maven.plugins Artifact: version-edit-plugin
Show documentation 
 

0 downloads
Artifact version-edit-plugin
Group com.soerensen.maven.plugins
Version 0.0.1
Last update 29. April 2019
Organization not specified
URL https://www.soerensen.com
License Apache License, Version 2.0
Dependencies amount 2
Dependencies maven-plugin-api, maven-plugin-annotations,
There are maybe transitive dependencies!

siddhi-gpl-execution-geo from group org.wso2.extension.siddhi.gpl.execution.geo (version 4.0.9)

FunctionExecutors 1. GeoWithinFunctionExecutor Input : (longitude double, latitude double, geoJSONGeometryFence string) OR (geoJSONGeometry string, geoJSONGeometryFence string) Output : true if (longitude, latitude) or geoJSONGeometry is within the geoJSONGeometryFence 2. GeoIntersectsFunctionExecutor Input : (longitude double, latitude double, geoJSONGeometryFence string) OR (geoJSONGeometry string, geoJSONGeometryFence string) Output : true if (longitude, latitude) or geoJSONGeometry intersects the geoJSONGeometryFence 3. GeoWithinDistanceFunctionExecutor Input : (longitude double, latitude double, geoJSONGeometryFence string, distance double) OR (geoJSONGeometry string, geoJSONGeometryFence string, distance double) Output : true if (longitude, latitude) or geoJSONGeometry is within distance of the geoJSONGeometryFence StreamProcessors 1. GeoCrossesStreamProcessor Input : (id string, longitude double, latitude double, geoJSONGeometryFence string) OR (id string, geoJSONGeometry string, geoJSONGeometryFence string) Output : an event with `crosses` additional attribute set to true when the object ((longitude, latitude) or geoJSONGeometry) crosses into geoJSONGeometryFence and an event with `crosses` additional attribute set to false when the object crosses out of the geoJSONGeometryFence 2. GeoStationaryStreamProcessor Input : (id string, longitude double, latitude double, geoJSONGeometryFence string, radius double) OR (id string, geoJSONGeometry string, geoJSONGeometryFence string, radius double) Output : when the object ((longitude, latitude) or geoJSONGeometry) starts being stationary within the radius an event with `stationary` additional attribute set to true. When the object starts to move out of the radius an event with `stationary` additional attribute set to false. 3. GeoProximityStreamProcessor Input : (id string, longitude double, latitude double, geoJSONGeometryFence string, radius double) OR (id string, geoJSONGeometry string, geoJSONGeometryFence string, radius double) Output : when two objects ((longitude, latitude) or geoJSONGeometry) starts being in close proximity within the radius an event with `inCloseProximity` additional attribute set to true. When the object starts to move out of the radius an event with `inCloseProximity` additional. attribute set to false. On each event, additional attributes `proximityWith` gives the id of the object that this object is in close proximity and `proximityId` is an id unique to the pair of objects

Group: org.wso2.extension.siddhi.gpl.execution.geo Artifact: siddhi-gpl-execution-geo
Show all versions Show documentation 
 

23 downloads
Artifact siddhi-gpl-execution-geo
Group org.wso2.extension.siddhi.gpl.execution.geo
Version 4.0.9
Last update 19. December 2017
Organization not specified
URL Not specified
License not specified
Dependencies amount 6
Dependencies siddhi-query-api, siddhi-query-compiler, siddhi-core, log4j, gson, gt-geojson,
There are maybe transitive dependencies!

rat-lib from group com.google.code.p.arat (version 0.5.1)

Release Audit Tool (RAT) is a tool to improve accuracy and efficiency when checking releases. It is heuristic in nature: making guesses about possible problems. It will produce false positives and cannot find every possible issue with a release. It's reports require interpretation. In response to demands from project quality tool developers, RAT is available as a library suitable for inclusion in tools. This POM describes that library. Note that binary compatibility is not gauranteed between 0.x releases.

Group: com.google.code.p.arat Artifact: rat-lib
Show all versions Show documentation Show source 
 

0 downloads
Artifact rat-lib
Group com.google.code.p.arat
Version 0.5.1
Last update 26. June 2007
Organization not specified
URL http://code.google.com/p/arat/
License The Apache License Version 2.0
Dependencies amount 2
Dependencies commons-collections, commons-lang,
There are maybe transitive dependencies!

netbeans-color-codes-preview from group com.junichi11.netbeans.modules (version 0.13.4)

Show color codes preview per line in a sidebar area of an editor. <h2>Disable / Enable</h2> Check/Uncheck View > Show Colors <h2>Supported color patterns</h2> <ul> <li>Hex color code (e.g. #ffffff, #000)</li> <li>Css rgb/rgba values (e.g. rgb(0,0,0), rgba(255, 255, 255, 0.8))</li> <li>Css hsl/hsla values (e.g. hsl(0, 100%, 50%), hsla(120, 100%, 50%, 0.5))</li> <li>Named colors (e.g. red, blue)</li> <li>Java Color class (e.g. Color.black, new Color(100, 100, 100))</li> </ul> <h2>Multiple colors</h2> <ul> <li>Show top two colors in a sidebar if there are multiple colors in a line.</li> <li>If you want to check all colors, please click a specific rectangle. They will be shown as a list.</li> </ul> <h2>Change a color using the color chooser</h2> <ul> <li>Click a colored rectangle</li> <li>Click a color value of a list</li> <li>Select a new color in the color chooser</li> <li>An old color value will be changed to new one with the same format</li> </ul> <h2>Generate color codes</h2><p>You can generate color codes via a code generator(<kbd>Alt</kbd> + <kbd>Ins</kbd>).</p> <ol> <li>Run a code generator(Alt + Ins)</li> <li>Choose <code>Color...</code></li> <li>Choose format you expect (e.g. <code>new Color(r, g, b)</code>)</li> <li>Choose a color</li> <li>Click the OK button</li> <li>A color code is generated at the caret position</li> </ol> <h2>Options</h2> Tools > Options > Miscellaneous > Color Codes Preview <h3>Regex for enabled mime-types for Hex and CSS colors</h3> Default value is `^text/(x-)?(css|less|sass|scss)$`. If you would like to disable/enable some mime-types, please change the default regex. This pattern is used when the plugin checks a mime-type. <h3>Named Colors</h3> This option is `false` by default. If you would like to show named colors, please check it. <h2>NOTE</h2> <ul> <li>If you would like to show colors of `Color.decode(<hex>)` e.g. `Color.decode(#000000)`, Please add `java` to "Regex for enabled mime-types" of Hex and CSS e.g. (`^text/(x-)?(css|less|sass|scss|java)$`)</li> <li>Colors may be shown if they are not color codes. e.g. "#feature" contains #fea. This plugin recognizes it as a hex color code.</li> <li>If you use the GTK Look and Feel, you cannot change an alpha value in the color chooser.</li> <li>Hsl or hsla color values may not be changed correctly when you use the color chooser. (There may be 1% errors.)</li> </ul>

Group: com.junichi11.netbeans.modules Artifact: netbeans-color-codes-preview
Show all versions 
 

0 downloads
Artifact netbeans-color-codes-preview
Group com.junichi11.netbeans.modules
Version 0.13.4
Last update 10. October 2021
Organization not specified
URL https://github.com/junichi11/netbeans-color-codes-preview
License Apache License, Version 2.0
Dependencies amount 16
Dependencies org-netbeans-api-annotations-common, org-netbeans-modules-editor-lib2, org-netbeans-modules-editor-lib, org-openide-util, org-openide-util-ui, org-netbeans-modules-editor-mimelookup, org-openide-util-lookup, org-netbeans-modules-editor-settings, org-netbeans-modules-editor, org-openide-dialogs, org-netbeans-modules-editor-fold, org-openide-text, org-netbeans-modules-options-api, org-openide-awt, org-netbeans-modules-editor-document, org-openide-modules,
There are maybe transitive dependencies!

gridSearch from group nz.ac.waikato.cms.weka (version 1.0.12)

Performs a grid search of parameter pairs for the a classifier (Y-axis, default is LinearRegression with the "Ridge" parameter) and the PLSFilter (X-axis, "# of Components") and chooses the best pair found for the actual predicting. The initial grid is worked on with 2-fold CV to determine the values of the parameter pairs for the selected type of evaluation (e.g., accuracy). The best point in the grid is then taken and a 10-fold CV is performed with the adjacent parameter pairs. If a better pair is found, then this will act as new center and another 10-fold CV will be performed (kind of hill-climbing). This process is repeated until no better pair is found or the best pair is on the border of the grid. In case the best pair is on the border, one can let GridSearch automatically extend the grid and continue the search. Check out the properties 'gridIsExtendable' (option '-extend-grid') and 'maxGridExtensions' (option '-max-grid-extensions <num>'). GridSearch can handle doubles, integers (values are just cast to int) and booleans (0 is false, otherwise true). float, char and long are supported as well. The best filter/classifier setup can be accessed after the buildClassifier call via the getBestFilter/getBestClassifier methods. Note on the implementation: after the data has been passed through the filter, a default NumericCleaner filter is applied to the data in order to avoid numbers that are getting too small and might produce NaNs in other schemes.

Group: nz.ac.waikato.cms.weka Artifact: gridSearch
Show all versions Show documentation Show source 
 

1 downloads
Artifact gridSearch
Group nz.ac.waikato.cms.weka
Version 1.0.12
Last update 30. October 2018
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/gridSearch
License GNU General Public License 3
Dependencies amount 2
Dependencies weka-dev, partialLeastSquares,
There are maybe transitive dependencies!

pact-jvm-provider-junit5_2.12 from group au.com.dius (version 3.6.15)

# Pact Junit 5 Extension ## Overview For writing Pact verification tests with JUnit 5, there is an JUnit 5 Invocation Context Provider that you can use with the `@TestTemplate` annotation. This will generate a test for each interaction found for the pact files for the provider. To use it, add the `@Provider` and one of the pact source annotations to your test class (as per a JUnit 4 test), then add a method annotated with `@TestTemplate` and `@ExtendWith(PactVerificationInvocationContextProvider.class)` that takes a `PactVerificationContext` parameter. You will need to call `verifyInteraction()` on the context parameter in your test template method. For example: ```java @Provider(&quot;myAwesomeService&quot;) @PactFolder(&quot;pacts&quot;) public class ContractVerificationTest { @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void pactVerificationTestTemplate(PactVerificationContext context) { context.verifyInteraction(); } } ``` For details on the provider and pact source annotations, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs. ## Test target You can set the test target (the object that defines the target of the test, which should point to your provider) on the `PactVerificationContext`, but you need to do this in a before test method (annotated with `@BeforeEach`). There are three different test targets you can use: `HttpTestTarget`, `HttpsTestTarget` and `AmpqTestTarget`. For example: ```java @BeforeEach void before(PactVerificationContext context) { context.setTarget(HttpTestTarget.fromUrl(new URL(myProviderUrl))); // or something like // context.setTarget(new HttpTestTarget(&quot;localhost&quot;, myProviderPort, &quot;/&quot;)); } ``` **Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least version 2.22.1 uses an isolated classpath. For example, configure it by adding the following to your POM: ```xml &lt;plugin&gt; &lt;groupId&gt;org.apache.maven.plugins&lt;/groupId&gt; &lt;artifactId&gt;maven-surefire-plugin&lt;/artifactId&gt; &lt;version&gt;2.22.1&lt;/version&gt; &lt;configuration&gt; &lt;useSystemClassLoader&gt;false&lt;/useSystemClassLoader&gt; &lt;/configuration&gt; &lt;/plugin&gt; ``` ## Provider State Methods Provider State Methods work in the same way as with JUnit 4 tests, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs. ### Using multiple classes for the state change methods If you have a large number of state change methods, you can split things up by moving them to other classes. You will need to specify the additional classes on the test context in a `Before` method. Do this with the `withStateHandler` or `setStateHandlers` methods. See [StateAnnotationsOnAdditionalClassTest](pact-jvm-provider-junit5/src/test/java/au/com/dius/pact/provider/junit5/StateAnnotationsOnAdditionalClassTest.java) for an example. ## Modifying the requests before they are sent **Important Note:** You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! Sometimes you may need to add things to the requests that can&apos;t be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Http and Https test targets support injecting the request that will executed into the test template method. You can then add things to the request before calling the `verifyInteraction()` method. For example to add a header: ```java @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void testTemplate(PactVerificationContext context, HttpRequest request) { // This will add a header to the request request.addHeader(&quot;X-Auth-Token&quot;, &quot;1234&quot;); context.verifyInteraction(); } ``` ## Objects that can be injected into the test methods You can inject the following objects into your test methods (just like the `PactVerificationContext`). They will be null if injected before the supported phase. | Object | Can be injected from phase | Description | | ------ | --------------- | ----------- | | PactVerificationContext | @BeforeEach | The context to use to execute the interaction test | | Pact | any | The Pact model for the test | | Interaction | any | The Interaction model for the test | | HttpRequest | @TestTemplate | The request that is going to be executed (only for HTTP and HTTPS targets) | | ProviderVerifier | @TestTemplate | The verifier instance that is used to verify the interaction |

Group: au.com.dius Artifact: pact-jvm-provider-junit5_2.12
Show all versions Show documentation Show source 
 

4 downloads
Artifact pact-jvm-provider-junit5_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies pact-jvm-support, pact-jvm-provider_2.12, junit-jupiter-api,
There are maybe transitive dependencies!

pact-jvm-provider-junit5 from group au.com.dius (version 4.0.10)

# Pact Junit 5 Extension ## Overview For writing Pact verification tests with JUnit 5, there is an JUnit 5 Invocation Context Provider that you can use with the `@TestTemplate` annotation. This will generate a test for each interaction found for the pact files for the provider. To use it, add the `@Provider` and one of the pact source annotations to your test class (as per a JUnit 4 test), then add a method annotated with `@TestTemplate` and `@ExtendWith(PactVerificationInvocationContextProvider.class)` that takes a `PactVerificationContext` parameter. You will need to call `verifyInteraction()` on the context parameter in your test template method. For example: ```java @Provider(&quot;myAwesomeService&quot;) @PactFolder(&quot;pacts&quot;) public class ContractVerificationTest { @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void pactVerificationTestTemplate(PactVerificationContext context) { context.verifyInteraction(); } } ``` For details on the provider and pact source annotations, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs. ## Test target You can set the test target (the object that defines the target of the test, which should point to your provider) on the `PactVerificationContext`, but you need to do this in a before test method (annotated with `@BeforeEach`). There are three different test targets you can use: `HttpTestTarget`, `HttpsTestTarget` and `AmpqTestTarget`. For example: ```java @BeforeEach void before(PactVerificationContext context) { context.setTarget(HttpTestTarget.fromUrl(new URL(myProviderUrl))); // or something like // context.setTarget(new HttpTestTarget(&quot;localhost&quot;, myProviderPort, &quot;/&quot;)); } ``` **Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least version 2.22.1 uses an isolated classpath. For example, configure it by adding the following to your POM: ```xml &lt;plugin&gt; &lt;groupId&gt;org.apache.maven.plugins&lt;/groupId&gt; &lt;artifactId&gt;maven-surefire-plugin&lt;/artifactId&gt; &lt;version&gt;2.22.1&lt;/version&gt; &lt;configuration&gt; &lt;useSystemClassLoader&gt;false&lt;/useSystemClassLoader&gt; &lt;/configuration&gt; &lt;/plugin&gt; ``` ## Provider State Methods Provider State Methods work in the same way as with JUnit 4 tests, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs. ### Using multiple classes for the state change methods If you have a large number of state change methods, you can split things up by moving them to other classes. You will need to specify the additional classes on the test context in a `Before` method. Do this with the `withStateHandler` or `setStateHandlers` methods. See [StateAnnotationsOnAdditionalClassTest](src/test/java/au/com/dius/pact/provider/junit5/StateAnnotationsOnAdditionalClassTest.java) for an example. ## Modifying the requests before they are sent **Important Note:** You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! Sometimes you may need to add things to the requests that can&apos;t be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Http and Https test targets support injecting the request that will executed into the test template method. You can then add things to the request before calling the `verifyInteraction()` method. For example to add a header: ```java @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void testTemplate(PactVerificationContext context, HttpRequest request) { // This will add a header to the request request.addHeader(&quot;X-Auth-Token&quot;, &quot;1234&quot;); context.verifyInteraction(); } ``` ## Objects that can be injected into the test methods You can inject the following objects into your test methods (just like the `PactVerificationContext`). They will be null if injected before the supported phase. | Object | Can be injected from phase | Description | | ------ | --------------- | ----------- | | PactVerificationContext | @BeforeEach | The context to use to execute the interaction test | | Pact | any | The Pact model for the test | | Interaction | any | The Interaction model for the test | | HttpRequest | @TestTemplate | The request that is going to be executed (only for HTTP and HTTPS targets) | | ProviderVerifier | @TestTemplate | The verifier instance that is used to verify the interaction | ## Allowing the test to pass when no pacts are found to verify (version 4.0.7+) By default, the test will fail with an exception if no pacts were found to verify. This can be overridden by adding the `@IgnoreNoPactsToVerify` annotation to the test class. For this to work, you test class will need to be able to receive null values for any of the injected parameters.

Group: au.com.dius Artifact: pact-jvm-provider-junit5
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-junit5
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies junit-jupiter-api, pact-jvm-core-support, pact-jvm-provider,
There are maybe transitive dependencies!

pact-jvm-provider-lein_2.12 from group au.com.dius (version 3.6.15)

# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+] Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it&apos;s own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein_2.11 &quot;3.2.11&quot; :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core &quot;1.1.3&quot;] [ch.qos.logback/logback-classic &quot;1.1.3&quot;] [org.apache.httpcomponents/httpclient &quot;4.4.1&quot;]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol &quot;http&quot; :host &quot;localhost&quot; :port 8080 :path &quot;/&quot; :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol &quot;https&quot; :host &quot;localhost&quot; :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol &quot;https&quot; :host &quot;localhost&quot; :port 8443 :trust-store &quot;relative/path/to/trustStore.jks&quot; :trust-store-password &quot;changeme&quot; :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can&apos;t be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % &quot;Authorization&quot; &quot;oauth-token eyJhbGciOiJSUzI1NiIsIm...&quot;) :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file [version 3.3.3+] By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to &apos;true&apos; [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to &apos;true&apos;| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url &quot;http://localhost:8080/tasks/pactStateChange&quot; :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like &apos;/api/user/${id}&apos; for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with &apos;a request for payment&apos;. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {&quot;start-app&quot; ^{:doc &quot;Starts the app&quot;} [&quot;tasks to start app ...&quot;] ; insert tasks to start the app here &quot;terminate-app&quot; ^{:doc &quot;Kills the app&quot;} [&quot;tasks to terminate app ...&quot;] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task &quot;start-app&quot; :terminate-provider-task &quot;terminate-app&quot; :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime [3.0.4+] If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein_2.12
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 8
Dependencies pact-jvm-provider_2.12, clojure, core.match, leiningen-core, logback-core, logback-classic, httpclient, jansi,
There are maybe transitive dependencies!

pact-jvm-provider-lein from group au.com.dius (version 4.0.10)

# Leiningen plugin to verify a provider Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all configured pacts against your provider. ## To Use It ### 1. Add the plugin to your project plugins, preferably in it&apos;s own profile. ```clojure :profiles { :pact { :plugins [[au.com.dius/pact-jvm-provider-lein &quot;4.0.0&quot; :exclusions [commons-logging]]] :dependencies [[ch.qos.logback/logback-core &quot;1.1.3&quot;] [ch.qos.logback/logback-classic &quot;1.1.3&quot;] [org.apache.httpcomponents/httpclient &quot;4.4.1&quot;]] }}} ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the `:pact` configuration element of your project. ```clojure :pact { :service-providers { ; You can define as many as you need, but each must have a unique name :provider1 { ; All the provider properties are optional, and have sensible defaults (shown below) :protocol &quot;http&quot; :host &quot;localhost&quot; :port 8080 :path &quot;/&quot; :has-pact-with { ; Again, you can define as many consumers for each provider as you need, but each must have a unique name :consumer1 { ; pact file can be either a path or an URL :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` ### 3. Execute `lein with-profile pact pact-verify` You will have to have your provider running for this to pass. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `:insecure true` on the provider. ```clojure :pact { :service-providers { :provider1 { :protocol &quot;https&quot; :host &quot;localhost&quot; :port 8443 :insecure true :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```clojure :pact { :service-providers { :provider1 { :protocol &quot;https&quot; :host &quot;localhost&quot; :port 8443 :trust-store &quot;relative/path/to/trustStore.jks&quot; :trust-store-password &quot;changeme&quot; :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` `:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can&apos;t be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest object as a parameter. ```clojure :pact { :service-providers { :provider1 { ; function that adds an Authorization header to each request :request-filter #(.addHeader % &quot;Authorization&quot; &quot;oauth-token eyJhbGciOiJSUzI1NiIsIm...&quot;) :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`. The function will receive the provider info as a parameter. ## Turning off URL decoding of the paths in the pact file By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin options can be specified on the command line: |Property|Description| |--------|-----------| |:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]| |:pact.filter.consumers|Comma seperated list of consumer names to verify| |:pact.filter.description|Only verify interactions whose description match the provided regular expression| |:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |:pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to &apos;true&apos; [version 3.5.18+]| |:pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to &apos;true&apos;| Example, to run verification only for a particular consumer: ``` $ lein with-profile pact pact-verify :pact.filter.consumers=:consumer2 ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body` controls if the state is passed in the request body or as a query parameter. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```clojure :pact { :service-providers { :provider1 { :state-change-url &quot;http://localhost:8080/tasks/pactStateChange&quot; :state-change-uses-body false ; defaults to true :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as JSON in the body of the request. If it is set to false, it will passed as a query parameter. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made. #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like &apos;/api/user/${id}&apos; for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`. Adding `:pact.filter.consumers=:consumer1,:consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with &apos;a request for payment&apos;. `:pact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a provider state. ## Starting and shutting down your provider For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks together. So, by creating a `start-app` and `terminate-app` alias, you could so something like: $ lein with-profile pact do start-app, pact-verify, terminate-app However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task` and `:terminate-provider-task` on the provider. ```clojure :aliases {&quot;start-app&quot; ^{:doc &quot;Starts the app&quot;} [&quot;tasks to start app ...&quot;] ; insert tasks to start the app here &quot;terminate-app&quot; ^{:doc &quot;Kills the app&quot;} [&quot;tasks to terminate app ...&quot;] ; insert tasks to stop the app here } :pact { :service-providers { :provider1 { :start-provider-task &quot;start-app&quot; :terminate-provider-task &quot;terminate-app&quot; :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ``` Then you can just run: $ lein with-profile pact pact-verify and the `start-app` and `terminate-app` tasks will run before and after the provider verification. ## Specifying the provider hostname at runtime If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or AWS instance), you can give an anonymous function as the provider host that returns the host name. The function will receive the provider information as a parameter. ```clojure :pact { :service-providers { :provider1 { :host #(calculate-host-name %) :has-pact-with { :consumer1 { :pact-file &quot;path/to/provider1-consumer1-pact.json&quot; } } } } } ```

Group: au.com.dius Artifact: pact-jvm-provider-lein
Show all versions Show documentation Show source 
 

0 downloads
Artifact pact-jvm-provider-lein
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 10
Dependencies pact-jvm-provider, clojure, core.match, leiningen-core, maven-aether-provider, aether-connector-file, aether-connector-wagon, httpclient, jansi, groovy,
There are maybe transitive dependencies!



Page 2 from 3 (items total 44)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy