All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by from with all dependencies

Search JAR files by class name

git-commit-id-plugin from group at.molindo (version 2.1.10-alpha-1)

git-commit-id-plugin is a plugin quite similar to https://fisheye.codehaus.org/browse/mojo/tags/buildnumber-maven-plugin-1.0-beta-4 for example but as buildnumber only supports svn (which is very sad) and cvs (which is even more sad). This plugin makes basic repository information available through maven resources. This can be used to display "what version is this?" or "who has deployed this and when, from which branch?" information at runtime - making it easy to find things like "oh, that isn't deployed yet, I'll test it tomorrow" and making both testers and developers life easier. The data currently exported is like this (that's the end effect from the GitRepositoryState Bean): { "branch" : "testing-maven-git-plugin", "commitTime" : "06.01.1970 @ 16:16:26 CET", "commitId" : "787e39f61f99110e74deed68ab9093088d64b969", "commitUserName" : "Konrad Malawski", "commitUserEmail" : "[email protected]", "commitMessageFull" : "releasing my fun plugin :-) + fixed some typos + cleaned up directory structure + added license etc", "commitMessageShort" : "releasing my fun plugin :-)", "buildTime" : "06.01.1970 @ 16:17:53 CET", "buildUserName" : "Konrad Malawski", "buildUserEmail" : "[email protected]" } Note that the data is exported via maven resource filtering and is really easy to use with spring - which I've explained in detail in this readme https://github.com/ktoso/maven-git-commit-id-plugin

Group: at.molindo Artifact: git-commit-id-plugin
Show documentation Show source 
 

0 downloads
Artifact git-commit-id-plugin
Group at.molindo
Version 2.1.10-alpha-1
Last update 28. December 2015
Newest version Yes
Organization not specified
URL http://www.blog.project13.pl
License GNU Lesser General Public License 3.0
Dependencies amount 8
Dependencies maven-plugin-api, maven-project, jackson-databind, guice, joda-time, guava, annotations, org.eclipse.jgit,
There are maybe transitive dependencies!

straightedge from group com.massisframework (version 0.8)

Includes 2 main parts: - Path finding through 2D polygons using the A star algorithm and navigation-mesh generation Field of vision / shadows / line of sight / lighting. The basic polygon and point classes are the KPolygon and KPoint. KPolygon contains a list of KPoints for vertices as well as a center (centroid), area, and radius (circular bound or distance from center to furthest point). KPolygon was born out of the need for a more game-oriented and flexible polygon class than the Path2D class in the standard Java library. KPolygon implements java.awt.geom.Shape so it can be easily drawn and filled by Java2D's Graphics2D object. - This API provides path-finding and field-of-vision. For other complex geometric operations such as buffering (fattening and shrinking) and constructive area geometry (intersections and unions) it is recommended to use the excellent Java Topology Suite (JTS). The standard Java2D library also provides the Area class which can be used for some constructive area geometry operations. Note that there is a utility class PolygonConverter that can quickly convert KPolygons to JTS polygons and vice versa.

Group: com.massisframework Artifact: straightedge
Show documentation Show source 
 

1 downloads
Artifact straightedge
Group com.massisframework
Version 0.8
Last update 21. December 2015
Newest version Yes
Organization not specified
URL https://github.com/rpax/straightedge
License New BSD License
Dependencies amount 1
Dependencies jts,
There are maybe transitive dependencies!

msdk-mona from group io.github.msdk (version 0.0.1)

MassBank of America (MoNA), is an auto curating repository for storing, comparing and querying mass spectra of chemical compounds. It is metadata centric and it was designed to allow easy integration into other tools by utilize its REST based application programming interface. At the current time it contains over 200k predicted and 40k unique experimental mass spectra and their associated metadata. The predicted spectra were obtained by utilizing the lipid blast library and the experimental spectra were acquired from 30 different facilities all over the world, including several major research facilities in the United States and Japan. MoNA is utilizing the InChI Key as unique identifier for chemicals and is designed for easy scalability and expendability. This is realized by utilizing common applications like nginx, grails, AngularJS, postgresSQL and tomcat. MoNA is currently integrated in applications like MSDial, BinBase, MZMine and the statistics package R. This was accomplished by utilizing its REST based API, which is also utilized by its main AngularJS based web interface. We consider MoNA to be highly useful for crosslinking mass spectra in publications, identification of unknowns and integration in data acquisition software. This package provides you with access to the REST api of the main MoNA installation.

Group: io.github.msdk Artifact: msdk-mona
Show documentation Show source 
 

0 downloads
Artifact msdk-mona
Group io.github.msdk
Version 0.0.1
Last update 24. November 2015
Newest version Yes
Organization not specified
URL Not specified
License not specified
Dependencies amount 5
Dependencies msdk-datamodel, minimal-json, commons-lang, jersey-media-json-jackson, jersey-client,
There are maybe transitive dependencies!

antlr3-maven-plugin from group org.antlr (version 3.5.2)

This is the brand new, re-written from scratch plugin for ANTLR v3. Previous valiant efforts all suffered from being unable to modify the ANTLR Tool itself to provide support not just for Maven oriented things but any other tool that might wish to invoke ANTLR without resorting to the command line interface. Rather than try to shoe-horn new code into the existing Mojo (in fact I think that by incorporating a patch supplied by someone I ended up with tow versions of the Mojo, I elected to rewrite everything from scratch, including the documentation, so that we might end up with a perfect Mojo that can do everything that ANTLR v3 supports such as imported grammar processing, proper support for library directories and locating token files from generated sources, and so on. In the end I decided to also change the the ANTLR Tool.java code so that it would be the provider of all the things that a build tool needs, rather than delegating things to 5 different tools. So, things like dependencies, dependency sorting, option tracking, generating sources and so on are all folded back in to ANTLR's Tool.java code, where they belong, and they now provide a public interface to anyone that might want to interface with them. One other goal of this rewrite was to completely document the whole thing to death. Hence even this pom has more comments than funcitonal elements, in case I get run over by a bus or fall off a cliff while skiing. Jim Idle - March 2009

Group: org.antlr Artifact: antlr3-maven-plugin
Show all versions Show documentation Show source 
 

1 downloads
Artifact antlr3-maven-plugin
Group org.antlr
Version 3.5.2
Last update 25. March 2014
Newest version Yes
Organization not specified
URL http://antlr.org
License not specified
Dependencies amount 4
Dependencies maven-plugin-api, maven-project, plexus-compiler-api, antlr,
There are maybe transitive dependencies!

EasyConfig from group net.sf.ssg.tools (version 0.1)

EasyConfig provides simple way to overview and apply settings to file or folder based collections of files. Synonyms to "setting" are property, attribute, value while throughout application "setting" is used. The settings are groupped in "configuration" that is collection of settings from various sources. Main design concepts are: * minimalistic way to describe configuration * pluggable support for data types (validation), setting sources, source handlers Sample use case: An application is deployed in multiple locations. We need to quickly check key settings/parameters and optionally modify some of them. These values are located in different places: - in files directly in file structure - in files inside archive files (optionally nested archives) - values in DB tables - values accessible via URLs - other sources (just guessed: SSH/telnet connection+some command(s), UPnP devices, proprietary protocols, etc) We gather info from any supported (extendable) source and can modify and apply changes if supported by source (e.g. we can't update value that is count of rows in DB table, but we can read that value).

Group: net.sf.ssg.tools Artifact: EasyConfig
Show documentation Show source 
 

0 downloads
Artifact EasyConfig
Group net.sf.ssg.tools
Version 0.1
Last update 01. February 2013
Newest version Yes
Organization not specified
URL http://sourceforge.net/p/easyconfig
License The Apache Software License, Version 2.0
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

banana-split from group de.drni.bananasplit (version 0.4.0)

DICTIONARY-BASED COMPOUND SPLITTER FOR GERMAN BananaSplit is a compound splitter for German that uses a dictionary resource. The dictionary can be either a simple word list, or a word list equipped with POS values, or an XML based dictionary. The original version was able to use GermaNet as a dictionary. This is useful in applications that rely on GermaNet anyway: no additional lexicon needs to be generated and held in memory. This was also the original purpose of BananaSplit. It served as a compound splitter for a tool called BananaRelation. BananaRelation cannot be published here as it makes heavy use of unpublished code by EML Research, Heidelberg. BananaSplit can either be used as a standalone application or it can be integrated into other Java programs (as a library). This program emerged from the seminar Lexical Semantic Processing in NLP (winter term 2005/2006) taught by Iryna Gurevych at the Seminar für Sprachwissenschaft, Tübingen. Both BananaSplit and BananaRelation were introduced to the seminar participants on 17th of December, 2005. The key algorithm for compound splitting is based on Langer (1998). The program came to use in Müller and Gurevych (2006). Please note that the program splits compounds into two parts only. Details are given in the documents linked below.

Group: de.drni.bananasplit Artifact: banana-split
Show documentation Show source 
 

0 downloads
Artifact banana-split
Group de.drni.bananasplit
Version 0.4.0
Last update 11. September 2012
Newest version Yes
Organization not specified
URL http://niels.drni.de/s9y/pages/bananasplit.html
License Apache License 2.0
Dependencies amount 1
Dependencies oz-generic-levenshtein,
There are maybe transitive dependencies!

raceSearch from group nz.ac.waikato.cms.weka (version 1.0.2)

Races the cross validation error of competing attribute subsets. Use in conjuction with a ClassifierSubsetEval. RaceSearch has four modes: forward selection races all single attribute additions to a base set (initially no attributes), selects the winner to become the new base set and then iterates until there is no improvement over the base set. Backward elimination is similar but the initial base set has all attributes included and races all single attribute deletions. Schemata search is a bit different. Each iteration a series of races are run in parallel. Each race in a set determines whether a particular attribute should be included or not---ie the race is between the attribute being "in" or "out". The other attributes for this race are included or excluded randomly at each point in the evaluation. As soon as one race has a clear winner (ie it has been decided whether a particular attribute should be inor not) then the next set of races begins, using the result of the winning race from the previous iteration as new base set. Rank race first ranks the attributes using an attribute evaluator and then races the ranking. The race includes no attributes, the top ranked attribute, the top two attributes, the top three attributes, etc. It is also possible to generate a raked list of attributes through the forward racing process. If generateRanking is set to true then a complete forward race will be run---that is, racing continues until all attributes have been selected. The order that they are added in determines a complete ranking of all the attributes. Racing uses paired and unpaired t-tests on cross-validation errors of competing subsets. When there is a significant difference between the means of the errors of two competing subsets then the poorer of the two can be eliminated from the race. Similarly, if there is no significant difference between the mean errors of two competing subsets and they are within some threshold of each other, then one can be eliminated from the race.

Group: nz.ac.waikato.cms.weka Artifact: raceSearch
Show all versions Show documentation Show source 
 

0 downloads
Artifact raceSearch
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Newest version Yes
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/raceSearch
License GNU General Public License 3
Dependencies amount 2
Dependencies weka-dev, classifierBasedAttributeSelection,
There are maybe transitive dependencies!

jung2 from group net.sf.jung (version 2.0.1)

JUNG the Java Universal Network/Graph Framework--is a software library that provides a common and extendible language for the modeling, analysis, and visualization of data that can be represented as a graph or network. It is written in Java, which allows JUNG-based applications to make use of the extensive built-in capabilities of the Java API, as well as those of other existing third-party Java libraries. The JUNG architecture is designed to support a variety of representations of entities and their relations, such as directed and undirected graphs, multi-modal graphs, graphs with parallel edges, and hypergraphs. It provides a mechanism for annotating graphs, entities, and relations with metadata. This facilitates the creation of analytic tools for complex data sets that can examine the relations between entities as well as the metadata attached to each entity and relation. The current distribution of JUNG includes implementations of a number of algorithms from graph theory, data mining, and social network analysis, such as routines for clustering, decomposition, optimization, random graph generation, statistical analysis, and calculation of network distances, flows, and importance measures (centrality, PageRank, HITS, etc.). JUNG also provides a visualization framework that makes it easy to construct tools for the interactive exploration of network data. Users can use one of the layout algorithms provided, or use the framework to create their own custom layouts. In addition, filtering mechanisms are provided which allow users to focus their attention, or their algorithms, on specific portions of the graph.

Group: net.sf.jung Artifact: jung2
Show all versions 
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact jung2
Group net.sf.jung
Version 2.0.1
Last update 24. January 2010
Newest version Yes
Organization not specified
URL http://jung.sourceforge.net/site
License The BSD License
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!

mydas from group uk.ac.ebi.mydas (version 1.0.2)

This project aims to offer an easy-to-extend Java DAS server framework. It offers several advantages: * Implementing data sources is very easy but also flexible and powerful. * Data caching is built into the system, with access to the caching mechanism made available to the data sources. * All aspects of the server are highly configurable, including selecting options where the DAS 1.53 specification offers choices to the implementor. * The latest Java technologies have been used throughout the system to optimise performance and simplify data source development. * Wherever possible the same terminology is used in the API as in the DAS specification and XML - again, making data source development more easy. * The server allows XSLT transforms of the DAS XML to be configured to provide a simple DAS client view (limited to the single DAS source). More details of the DAS protocol, DAS servers and DAS clients can be found at http://www.biodas.org/wiki/Main_Page. The first version of this server is a complete implementation of Distributed Sequence Annotation System (DAS) Version 1.53. If you are interested in learning more about DAS 1.53, the specification is highly recommended as a concise and complete description of the DAS protocol that can be obtained from: http://biodas.org/documents/spec.html

Group: uk.ac.ebi.mydas Artifact: mydas
Show documentation Show source 
 

0 downloads
Artifact mydas
Group uk.ac.ebi.mydas
Version 1.0.2
Last update 19. August 2007
Newest version Yes
Organization not specified
URL http://code.google.com/p/mydas/
License The Apache Software License 2.0
Dependencies amount 7
Dependencies commons-collections, servlet-api, log4j, xpp3, xercesImpl, oscache, commons-logging,
There are maybe transitive dependencies!

pact-jvm-provider-junit5_2.12 from group au.com.dius (version 3.6.14)

# Pact Junit 5 Extension ## Overview For writing Pact verification tests with JUnit 5, there is an JUnit 5 Invocation Context Provider that you can use with the `@TestTemplate` annotation. This will generate a test for each interaction found for the pact files for the provider. To use it, add the `@Provider` and one of the pact source annotations to your test class (as per a JUnit 4 test), then add a method annotated with `@TestTemplate` and `@ExtendWith(PactVerificationInvocationContextProvider.class)` that takes a `PactVerificationContext` parameter. You will need to call `verifyInteraction()` on the context parameter in your test template method. For example: ```java @Provider("myAwesomeService") @PactFolder("pacts") public class ContractVerificationTest { @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void pactVerificationTestTemplate(PactVerificationContext context) { context.verifyInteraction(); } } ``` For details on the provider and pact source annotations, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs. ## Test target You can set the test target (the object that defines the target of the test, which should point to your provider) on the `PactVerificationContext`, but you need to do this in a before test method (annotated with `@BeforeEach`). There are three different test targets you can use: `HttpTestTarget`, `HttpsTestTarget` and `AmpqTestTarget`. For example: ```java @BeforeEach void before(PactVerificationContext context) { context.setTarget(HttpTestTarget.fromUrl(new URL(myProviderUrl))); // or something like // context.setTarget(new HttpTestTarget("localhost", myProviderPort, "/")); } ``` **Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least version 2.22.1 uses an isolated classpath. For example, configure it by adding the following to your POM: ```xml <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.22.1</version> <configuration> <useSystemClassLoader>false</useSystemClassLoader> </configuration> </plugin> ``` ## Provider State Methods Provider State Methods work in the same way as with JUnit 4 tests, refer to the [Pact junit runner](../pact-jvm-provider-junit/README.md) docs. ## Modifying the requests before they are sent **Important Note:** You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Http and Https test targets support injecting the request that will executed into the test template method. You can then add things to the request before calling the `verifyInteraction()` method. For example to add a header: ```java @TestTemplate @ExtendWith(PactVerificationInvocationContextProvider.class) void testTemplate(PactVerificationContext context, HttpRequest request) { // This will add a header to the request request.addHeader("X-Auth-Token", "1234"); context.verifyInteraction(); } ``` ## Objects that can be injected into the test methods You can inject the following objects into your test methods (just like the `PactVerificationContext`). They will be null if injected before the supported phase. | Object | Can be injected from phase | Description | | ------ | --------------- | ----------- | | PactVerificationContext | @BeforeEach | The context to use to execute the interaction test | | Pact | any | The Pact model for the test | | Interaction | any | The Interaction model for the test | | HttpRequest | @TestTemplate | The request that is going to be executed (only for HTTP and HTTPS targets) | | ProviderVerifier | @TestTemplate | The verifier instance that is used to verify the interaction |

Group: au.com.dius Artifact: pact-jvm-provider-junit5_2.12
Show all versions Show documentation Show source 
 

4 downloads
Artifact pact-jvm-provider-junit5_2.12
Group au.com.dius
Version 3.6.14
Last update 28. September 2019
Newest version Yes
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 3
Dependencies pact-jvm-support, pact-jvm-provider_2.12, junit-jupiter-api,
There are maybe transitive dependencies!



Page 729 from 735 (items total 7345)
Our partner network: Download PHP libraries without composer, Online Shopping in Tbilisi (Georgia)


© 2018 Weber Informatics LLC