Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
ne.codenameone-parparvm.7.0.161.source-code.rpmalloc.c Maven / Gradle / Ivy
/* rpmalloc.c - Memory allocator - Public Domain - 2016 Mattias Jansson / Rampant Pixels
*
* This library provides a cross-platform lock free thread caching malloc implementation in C11.
* The latest source code is always available at
*
* https://github.com/rampantpixels/rpmalloc
*
* This library is put in the public domain; you can redistribute it and/or modify it without any restrictions.
*
*/
#include "rpmalloc.h"
// Build time configurable limits
// Presets, if none is defined it will default to performance priority
//#define ENABLE_UNLIMITED_CACHE
//#define DISABLE_CACHE
//#define ENABLE_SPACE_PRIORITY_CACHE
// Presets for cache limits
#if defined(ENABLE_UNLIMITED_CACHE)
// Unlimited caches
#define MIN_SPAN_CACHE_RELEASE 16
#define MAX_SPAN_CACHE_DIVISOR 1
#elif defined(DISABLE_CACHE)
//Disable cache
#define MIN_SPAN_CACHE_RELEASE 1
#define MAX_SPAN_CACHE_DIVISOR 0
#elif defined(ENABLE_SPACE_PRIORITY_CACHE)
// Space priority cache limits
#define MIN_SPAN_CACHE_SIZE 8
#define MIN_SPAN_CACHE_RELEASE 8
#define MAX_SPAN_CACHE_DIVISOR 16
#define GLOBAL_SPAN_CACHE_MULTIPLIER 1
#else
// Default - performance priority cache limits
//! Limit of thread cache in number of spans for each page count class (undefine for unlimited cache - i.e never release spans to global cache unless thread finishes)
//! Minimum cache size to remain after a release to global cache
#define MIN_SPAN_CACHE_SIZE 8
//! Minimum number of spans to transfer between thread and global cache
#define MIN_SPAN_CACHE_RELEASE 16
//! Maximum cache size divisor (max cache size will be max allocation count divided by this divisor)
#define MAX_SPAN_CACHE_DIVISOR 8
//! Multiplier for global span cache limit (max cache size will be calculated like thread cache and multiplied with this)
#define GLOBAL_SPAN_CACHE_MULTIPLIER 4
#endif
//! Size of heap hashmap
#define HEAP_ARRAY_SIZE 79
#ifndef ENABLE_VALIDATE_ARGS
//! Enable validation of args to public entry points
#define ENABLE_VALIDATE_ARGS 0
#endif
#ifndef ENABLE_STATISTICS
//! Enable statistics collection
#define ENABLE_STATISTICS 0
#endif
#ifndef ENABLE_ASSERTS
//! Enable asserts
#define ENABLE_ASSERTS 0
#endif
// Platform and arch specifics
#ifdef _MSC_VER
# define ALIGNED_STRUCT(name, alignment) __declspec(align(alignment)) struct name
# define FORCEINLINE __forceinline
# define TLS_MODEL
# define _Static_assert static_assert
# define _Thread_local __declspec(thread)
# define atomic_thread_fence_acquire() //_ReadWriteBarrier()
# define atomic_thread_fence_release() //_ReadWriteBarrier()
# if ENABLE_VALIDATE_ARGS
# include
# endif
#else
# define ALIGNED_STRUCT(name, alignment) struct __attribute__((__aligned__(alignment))) name
# define FORCEINLINE inline __attribute__((__always_inline__))
# define TLS_MODEL __attribute__((tls_model("initial-exec")))
# if !defined(__clang__) && defined(__GNUC__)
# define _Thread_local __thread
# endif
# ifdef __arm__
# define atomic_thread_fence_acquire() __asm volatile("dmb sy" ::: "memory")
# define atomic_thread_fence_release() __asm volatile("dmb st" ::: "memory")
# else
# define atomic_thread_fence_acquire() //__asm volatile("" ::: "memory")
# define atomic_thread_fence_release() //__asm volatile("" ::: "memory")
# endif
#endif
#if defined( __x86_64__ ) || defined( _M_AMD64 ) || defined( _M_X64 ) || defined( _AMD64_ ) || defined( __arm64__ ) || defined( __aarch64__ )
# define ARCH_64BIT 1
#else
# define ARCH_64BIT 0
#endif
#if defined( _WIN32 ) || defined( __WIN32__ ) || defined( _WIN64 )
# define PLATFORM_WINDOWS 1
#else
# define PLATFORM_POSIX 1
#endif
#include
#include
#if ENABLE_ASSERTS
# include
#else
# define assert(x)
#endif
// Atomic access abstraction
ALIGNED_STRUCT(atomic32_t, 4) {
int32_t nonatomic;
};
typedef struct atomic32_t atomic32_t;
ALIGNED_STRUCT(atomic64_t, 8) {
int64_t nonatomic;
};
typedef struct atomic64_t atomic64_t;
ALIGNED_STRUCT(atomicptr_t, 8) {
void* nonatomic;
};
typedef struct atomicptr_t atomicptr_t;
static FORCEINLINE int32_t
atomic_load32(atomic32_t* src) {
return src->nonatomic;
}
static FORCEINLINE void
atomic_store32(atomic32_t* dst, int32_t val) {
dst->nonatomic = val;
}
#if PLATFORM_POSIX
static FORCEINLINE void
atomic_store64(atomic64_t* dst, int64_t val) {
dst->nonatomic = val;
}
static FORCEINLINE int64_t
atomic_exchange_and_add64(atomic64_t* dst, int64_t add) {
return __sync_fetch_and_add(&dst->nonatomic, add);
}
#endif
static FORCEINLINE int32_t
atomic_incr32(atomic32_t* val) {
#ifdef _MSC_VER
int32_t old = (int32_t)_InterlockedExchangeAdd((volatile long*)&val->nonatomic, 1);
return (old + 1);
#else
return __sync_add_and_fetch(&val->nonatomic, 1);
#endif
}
static FORCEINLINE int32_t
atomic_add32(atomic32_t* val, int32_t add) {
#ifdef _MSC_VER
int32_t old = (int32_t)_InterlockedExchangeAdd((volatile long*)&val->nonatomic, add);
return (old + add);
#else
return __sync_add_and_fetch(&val->nonatomic, add);
#endif
}
static FORCEINLINE void*
atomic_load_ptr(atomicptr_t* src) {
return src->nonatomic;
}
static FORCEINLINE void
atomic_store_ptr(atomicptr_t* dst, void* val) {
dst->nonatomic = val;
}
static FORCEINLINE int
atomic_cas_ptr(atomicptr_t* dst, void* val, void* ref);
static void
thread_yield(void);
// Preconfigured limits and sizes
//! Memory page size
#define PAGE_SIZE 4096
//! Granularity of all memory page spans for small & medium block allocations
#define SPAN_ADDRESS_GRANULARITY 65536
//! Maximum size of a span of memory pages
#define SPAN_MAX_SIZE (SPAN_ADDRESS_GRANULARITY)
//! Mask for getting the start of a span of memory pages
#define SPAN_MASK (~((uintptr_t)SPAN_MAX_SIZE - 1))
//! Maximum number of memory pages in a span
#define SPAN_MAX_PAGE_COUNT (SPAN_MAX_SIZE / PAGE_SIZE)
//! Span size class granularity
#define SPAN_CLASS_GRANULARITY 4
//! Number of size classes for spans
#define SPAN_CLASS_COUNT (SPAN_MAX_PAGE_COUNT / SPAN_CLASS_GRANULARITY)
//! Granularity of a small allocation block
#define SMALL_GRANULARITY 16
//! Small granularity shift count
#define SMALL_GRANULARITY_SHIFT 4
//! Number of small block size classes
#define SMALL_CLASS_COUNT (((PAGE_SIZE - SPAN_HEADER_SIZE) >> 1) >> SMALL_GRANULARITY_SHIFT)
//! Maximum size of a small block
#define SMALL_SIZE_LIMIT (SMALL_CLASS_COUNT * SMALL_GRANULARITY)
//! Granularity of a medium allocation block
#define MEDIUM_GRANULARITY 512
//! Medimum granularity shift count
#define MEDIUM_GRANULARITY_SHIFT 9
//! Number of medium block size classes
#define MEDIUM_CLASS_COUNT 60
//! Maximum size of a medium block
#define MEDIUM_SIZE_LIMIT (SMALL_SIZE_LIMIT + (MEDIUM_GRANULARITY * MEDIUM_CLASS_COUNT) - SPAN_HEADER_SIZE)
//! Total number of small + medium size classes
#define SIZE_CLASS_COUNT (SMALL_CLASS_COUNT + MEDIUM_CLASS_COUNT)
//! Number of large block size classes
#define LARGE_CLASS_COUNT 32
//! Maximum number of memory pages in a large block
#define LARGE_MAX_PAGES (SPAN_MAX_PAGE_COUNT * LARGE_CLASS_COUNT)
//! Maximum size of a large block
#define LARGE_SIZE_LIMIT ((LARGE_MAX_PAGES * PAGE_SIZE) - SPAN_HEADER_SIZE)
#define SPAN_LIST_LOCK_TOKEN ((void*)1)
#define pointer_offset(ptr, ofs) (void*)((char*)(ptr) + (ptrdiff_t)(ofs))
#define pointer_diff(first, second) (ptrdiff_t)((const char*)(first) - (const char*)(second))
//! Size of a span header
#define SPAN_HEADER_SIZE 32
#if ARCH_64BIT
typedef int64_t offset_t;
#else
typedef int32_t offset_t;
#endif
typedef uint32_t count_t;
#if ENABLE_VALIDATE_ARGS
//! Maximum allocation size to avoid integer overflow
#define MAX_ALLOC_SIZE (((size_t)-1) - PAGE_SIZE)
#endif
// Data types
//! A memory heap, per thread
typedef struct heap_t heap_t;
//! Span of memory pages
typedef struct span_t span_t;
//! Size class definition
typedef struct size_class_t size_class_t;
//! Span block bookkeeping
typedef struct span_block_t span_block_t;
//! Span data union, usage depending on span state
typedef union span_data_t span_data_t;
//! Cache data
typedef struct span_counter_t span_counter_t;
struct span_block_t {
//! Free list
uint16_t free_list;
//! First autolinked block
uint16_t first_autolink;
//! Free count
uint16_t free_count;
//! Padding
uint16_t padding;
};
union span_data_t {
//! Span data
span_block_t block;
//! List size (used when span is part of a list)
uint32_t list_size;
};
struct span_t {
//! Heap ID
atomic32_t heap_id;
//! Size class
count_t size_class;
//! Span data
span_data_t data;
//! Next span
span_t* next_span;
//! Previous span
span_t* prev_span;
};
_Static_assert(sizeof(span_t) <= SPAN_HEADER_SIZE, "span size mismatch");
struct span_counter_t {
//! Allocation high water mark
uint32_t max_allocations;
//! Current number of allocations
uint32_t current_allocations;
//! Cache limit
uint32_t cache_limit;
};
struct heap_t {
//! Heap ID
int32_t id;
//! Deferred deallocation
atomicptr_t defer_deallocate;
//! Free count for each size class active span
span_block_t active_block[SIZE_CLASS_COUNT];
//! Active span for each size class
span_t* active_span[SIZE_CLASS_COUNT];
//! List of demi-used spans with free blocks for each size class (double linked list)
span_t* size_cache[SIZE_CLASS_COUNT];
//! List of free spans for each page count (single linked list)
span_t* span_cache[SPAN_CLASS_COUNT];
//! Allocation counters
span_counter_t span_counter[SPAN_CLASS_COUNT];
//! List of free spans for each large class count (single linked list)
span_t* large_cache[LARGE_CLASS_COUNT];
//! Allocation counters for large blocks
span_counter_t large_counter[LARGE_CLASS_COUNT];
//! Next heap in id list
heap_t* next_heap;
//! Next heap in orphan list
heap_t* next_orphan;
#if ENABLE_STATISTICS
//! Number of bytes currently reqeusted in allocations
size_t requested;
//! Number of bytes current allocated
size_t allocated;
//! Number of bytes transitioned thread -> global
size_t thread_to_global;
//! Number of bytes transitioned global -> thread
size_t global_to_thread;
#endif
};
_Static_assert(sizeof(heap_t) <= PAGE_SIZE*2, "heap size mismatch");
struct size_class_t {
//! Size of blocks in this class
uint16_t size;
//! Number of pages to allocate for a chunk
uint16_t page_count;
//! Number of blocks in each chunk
uint16_t block_count;
//! Class index this class is merged with
uint16_t class_idx;
};
_Static_assert(sizeof(size_class_t) == 8, "Size class size mismatch");
//! Global size classes
static size_class_t _memory_size_class[SIZE_CLASS_COUNT];
//! Heap ID counter
static atomic32_t _memory_heap_id;
#ifdef PLATFORM_POSIX
//! Virtual memory address counter
static atomic64_t _memory_addr;
#endif
//! Global span cache
static atomicptr_t _memory_span_cache[SPAN_CLASS_COUNT];
//! Global large cache
static atomicptr_t _memory_large_cache[LARGE_CLASS_COUNT];
//! Current thread heap
static _Thread_local heap_t* _memory_thread_heap TLS_MODEL;
//! All heaps
static atomicptr_t _memory_heaps[HEAP_ARRAY_SIZE];
//! Orphaned heaps
static atomicptr_t _memory_orphan_heaps;
//! Active heap count
static atomic32_t _memory_active_heaps;
//! Adaptive cache max allocation count
static uint32_t _memory_max_allocation[SPAN_CLASS_COUNT];
//! Adaptive cache max allocation count
static uint32_t _memory_max_allocation_large[LARGE_CLASS_COUNT];
#if ENABLE_STATISTICS
//! Total number of mapped memory pages
static atomic32_t _mapped_pages;
//! Running counter of total number of mapped memory pages since start
static atomic32_t _mapped_total;
//! Running counter of total number of unmapped memory pages since start
static atomic32_t _unmapped_total;
#endif
static void*
_memory_map(size_t page_count);
static void
_memory_unmap(void* ptr, size_t page_count);
static int
_memory_deallocate_deferred(heap_t* heap, size_t size_class);
//! Lookup a memory heap from heap ID
static heap_t*
_memory_heap_lookup(int32_t id) {
uint32_t list_idx = id % HEAP_ARRAY_SIZE;
heap_t* heap = atomic_load_ptr(&_memory_heaps[list_idx]);
while (heap && (heap->id != id))
heap = heap->next_heap;
return heap;
}
//! Get the span size class from page count
static size_t
_span_class_from_page_count(size_t page_count) {
assert((page_count > 0) && (page_count <= 16));
return ((page_count + SPAN_CLASS_GRANULARITY - 1) / SPAN_CLASS_GRANULARITY) - 1;
}
//! Increase an allocation counter
static void
_memory_counter_increase(span_counter_t* counter, uint32_t* global_counter) {
if (++counter->current_allocations > counter->max_allocations) {
counter->max_allocations = counter->current_allocations;
#if MAX_SPAN_CACHE_DIVISOR > 0
counter->cache_limit = counter->max_allocations / MAX_SPAN_CACHE_DIVISOR;
#endif
if (counter->max_allocations > *global_counter)
*global_counter = counter->max_allocations;
}
}
//! Insert the given list of memory page spans in the global cache for small/medium blocks
static void
_memory_global_cache_insert(span_t* first_span, size_t list_size, size_t page_count) {
assert((list_size == 1) || (first_span->next_span != 0));
#if MAX_SPAN_CACHE_DIVISOR > 0
while (1) {
size_t span_class_idx = _span_class_from_page_count(page_count);
void* global_span_ptr = atomic_load_ptr(&_memory_span_cache[span_class_idx]);
if (global_span_ptr != SPAN_LIST_LOCK_TOKEN) {
uintptr_t global_list_size = (uintptr_t)global_span_ptr & ~SPAN_MASK;
span_t* global_span = (span_t*)((void*)((uintptr_t)global_span_ptr & SPAN_MASK));
#ifdef GLOBAL_SPAN_CACHE_MULTIPLIER
size_t cache_limit = GLOBAL_SPAN_CACHE_MULTIPLIER * (_memory_max_allocation[span_class_idx] / MAX_SPAN_CACHE_DIVISOR);
if ((global_list_size >= cache_limit) && (global_list_size > MIN_SPAN_CACHE_SIZE))
break;
#endif
//We only have 16 bits for size of list, avoid overflow
if ((global_list_size + list_size) > 0xFFFF)
break;
//Use prev_span as skip pointer over this sublist range of spans
first_span->data.list_size = (uint32_t)list_size;
first_span->prev_span = global_span;
//Insert sublist into global cache
global_list_size += list_size;
void* first_span_ptr = (void*)((uintptr_t)first_span | global_list_size);
if (atomic_cas_ptr(&_memory_span_cache[span_class_idx], first_span_ptr, global_span_ptr))
return;
}
else {
//Atomic operation failed, yield timeslice and retry
thread_yield();
atomic_thread_fence_acquire();
}
}
#endif
//Global cache full, release pages
for (size_t ispan = 0; ispan < list_size; ++ispan) {
assert(first_span);
span_t* next_span = first_span->next_span;
_memory_unmap(first_span, page_count);
first_span = next_span;
}
}
//! Extract a number of memory page spans from the global cache for small/medium blocks
static span_t*
_memory_global_cache_extract(size_t page_count) {
span_t* span = 0;
size_t span_class_idx = _span_class_from_page_count(page_count);
atomicptr_t* cache = &_memory_span_cache[span_class_idx];
atomic_thread_fence_acquire();
void* global_span_ptr = atomic_load_ptr(cache);
while (global_span_ptr) {
if ((global_span_ptr != SPAN_LIST_LOCK_TOKEN) &&
atomic_cas_ptr(cache, SPAN_LIST_LOCK_TOKEN, global_span_ptr)) {
//Grab a number of thread cache spans, using the skip span pointer
//stored in prev_span to quickly skip ahead in the list to get the new head
uintptr_t global_span_count = (uintptr_t)global_span_ptr & ~SPAN_MASK;
span = (span_t*)((void*)((uintptr_t)global_span_ptr & SPAN_MASK));
assert((span->data.list_size == 1) || (span->next_span != 0));
span_t* new_global_span = span->prev_span;
global_span_count -= span->data.list_size;
//Set new head of global cache list
void* new_cache_head = global_span_count ?
((void*)((uintptr_t)new_global_span | global_span_count)) :
0;
atomic_store_ptr(cache, new_cache_head);
atomic_thread_fence_release();
break;
}
//List busy, yield timeslice and retry
thread_yield();
atomic_thread_fence_acquire();
global_span_ptr = atomic_load_ptr(cache);
}
return span;
}
/*! Insert the given list of memory page spans in the global cache for large blocks,
similar to _memory_global_cache_insert */
static void
_memory_global_cache_large_insert(span_t* span_list, size_t list_size, size_t span_count) {
assert((list_size == 1) || (span_list->next_span != 0));
assert(span_list->size_class == (SIZE_CLASS_COUNT + (span_count - 1)));
#if MAX_SPAN_CACHE_DIVISOR > 0
atomicptr_t* cache = &_memory_large_cache[span_count - 1];
while (1) {
void* global_span_ptr = atomic_load_ptr(cache);
if (global_span_ptr != SPAN_LIST_LOCK_TOKEN) {
uintptr_t global_list_size = (uintptr_t)global_span_ptr & ~SPAN_MASK;
span_t* global_span = (span_t*)((void*)((uintptr_t)global_span_ptr & SPAN_MASK));
#ifdef GLOBAL_SPAN_CACHE_MULTIPLIER
size_t cache_limit = GLOBAL_SPAN_CACHE_MULTIPLIER * (_memory_max_allocation_large[span_count-1] / MAX_SPAN_CACHE_DIVISOR);
if ((global_list_size >= cache_limit) && (global_list_size > MIN_SPAN_CACHE_SIZE))
break;
#endif
if ((global_list_size + list_size) > 0xFFFF)
break;
span_list->data.list_size = (uint32_t)list_size;
span_list->prev_span = global_span;
global_list_size += list_size;
void* new_global_span_ptr = (void*)((uintptr_t)span_list | global_list_size);
if (atomic_cas_ptr(cache, new_global_span_ptr, global_span_ptr))
return;
}
else {
thread_yield();
atomic_thread_fence_acquire();
}
}
#endif
//Global cache full, release spans
for (size_t ispan = 0; ispan < list_size; ++ispan) {
assert(span_list);
span_t* next_span = span_list->next_span;
_memory_unmap(span_list, span_count * SPAN_MAX_PAGE_COUNT);
span_list = next_span;
}
}
/*! Extract a number of memory page spans from the global cache for large blocks,
similar to _memory_global_cache_extract */
static span_t*
_memory_global_cache_large_extract(size_t span_count) {
span_t* span = 0;
atomicptr_t* cache = &_memory_large_cache[span_count - 1];
atomic_thread_fence_acquire();
void* global_span_ptr = atomic_load_ptr(cache);
while (global_span_ptr) {
if ((global_span_ptr != SPAN_LIST_LOCK_TOKEN) &&
atomic_cas_ptr(cache, SPAN_LIST_LOCK_TOKEN, global_span_ptr)) {
uintptr_t global_list_size = (uintptr_t)global_span_ptr & ~SPAN_MASK;
span = (span_t*)((void*)((uintptr_t)global_span_ptr & SPAN_MASK));
assert((span->data.list_size == 1) || (span->next_span != 0));
assert(span->size_class == (SIZE_CLASS_COUNT + (span_count - 1)));
span_t* new_global_span = span->prev_span;
global_list_size -= span->data.list_size;
void* new_global_span_ptr = global_list_size ?
((void*)((uintptr_t)new_global_span | global_list_size)) :
0;
atomic_store_ptr(cache, new_global_span_ptr);
atomic_thread_fence_release();
break;
}
thread_yield();
atomic_thread_fence_acquire();
global_span_ptr = atomic_load_ptr(cache);
}
return span;
}
//! Allocate a small/medium sized memory block from the given heap
static void*
_memory_allocate_from_heap(heap_t* heap, size_t size) {
#if ENABLE_STATISTICS
//For statistics we need to store the requested size in the memory block
size += sizeof(size_t);
#endif
//Calculate the size class index and do a dependent lookup of the final class index (in case of merged classes)
const size_t class_idx = _memory_size_class[(size <= SMALL_SIZE_LIMIT) ?
((size + (SMALL_GRANULARITY - 1)) >> SMALL_GRANULARITY_SHIFT) - 1 :
SMALL_CLASS_COUNT + ((size - SMALL_SIZE_LIMIT + (MEDIUM_GRANULARITY - 1)) >> MEDIUM_GRANULARITY_SHIFT) - 1].class_idx;
span_block_t* active_block = heap->active_block + class_idx;
size_class_t* size_class = _memory_size_class + class_idx;
const count_t class_size = size_class->size;
#if ENABLE_STATISTICS
heap->allocated += class_size;
heap->requested += size;
#endif
//Step 1: Try to get a block from the currently active span. The span block bookkeeping
// data for the active span is stored in the heap for faster access
use_active:
if (active_block->free_count) {
//Happy path, we have a span with at least one free block
span_t* span = heap->active_span[class_idx];
count_t offset = class_size * active_block->free_list;
uint32_t* block = pointer_offset(span, SPAN_HEADER_SIZE + offset);
assert(span);
--active_block->free_count;
if (!active_block->free_count) {
//Span is now completely allocated, set the bookkeeping data in the
//span itself and reset the active span pointer in the heap
span->data.block.free_count = 0;
span->data.block.first_autolink = (uint16_t)size_class->block_count;
heap->active_span[class_idx] = 0;
}
else {
//Get the next free block, either from linked list or from auto link
if (active_block->free_list < active_block->first_autolink) {
active_block->free_list = (uint16_t)(*block);
}
else {
++active_block->free_list;
++active_block->first_autolink;
}
assert(active_block->free_list < size_class->block_count);
}
#if ENABLE_STATISTICS
//Store the requested size for statistics
*(size_t*)pointer_offset(block, class_size - sizeof(size_t)) = size;
#endif
return block;
}
//Step 2: No active span, try executing deferred deallocations and try again if there
// was at least one of the reqeusted size class
if (_memory_deallocate_deferred(heap, class_idx)) {
if (active_block->free_count)
goto use_active;
}
//Step 3: Check if there is a semi-used span of the requested size class available
if (heap->size_cache[class_idx]) {
//Promote a pending semi-used span to be active, storing bookkeeping data in
//the heap structure for faster access
span_t* span = heap->size_cache[class_idx];
*active_block = span->data.block;
assert(active_block->free_count > 0);
span_t* next_span = span->next_span;
heap->size_cache[class_idx] = next_span;
heap->active_span[class_idx] = span;
goto use_active;
}
//Step 4: No semi-used span available, try grab a span from the thread cache
size_t span_class_idx = _span_class_from_page_count(size_class->page_count);
span_t* span = heap->span_cache[span_class_idx];
if (!span) {
//Step 5: No span available in the thread cache, try grab a list of spans from the global cache
span = _memory_global_cache_extract(size_class->page_count);
#if ENABLE_STATISTICS
if (span)
heap->global_to_thread += (size_t)span->data.list_size * size_class->page_count * PAGE_SIZE;
#endif
}
if (span) {
if (span->data.list_size > 1) {
//We got a list of spans, we will use first as active and store remainder in thread cache
span_t* next_span = span->next_span;
assert(next_span);
next_span->data.list_size = span->data.list_size - 1;
heap->span_cache[span_class_idx] = next_span;
}
else {
heap->span_cache[span_class_idx] = 0;
}
}
else {
//Step 6: All caches empty, map in new memory pages
span = _memory_map(size_class->page_count);
}
//Mark span as owned by this heap and set base data
atomic_store32(&span->heap_id, heap->id);
atomic_thread_fence_release();
span->size_class = (count_t)class_idx;
//If we only have one block we will grab it, otherwise
//set span as new span to use for next allocation
if (size_class->block_count > 1) {
//Reset block order to sequential auto linked order
active_block->free_count = (uint16_t)(size_class->block_count - 1);
active_block->free_list = 1;
active_block->first_autolink = 1;
heap->active_span[class_idx] = span;
}
else {
span->data.block.free_count = 0;
span->data.block.first_autolink = (uint16_t)size_class->block_count;
}
//Track counters
_memory_counter_increase(&heap->span_counter[span_class_idx], &_memory_max_allocation[span_class_idx]);
#if ENABLE_STATISTICS
//Store the requested size for statistics
*(size_t*)pointer_offset(span, SPAN_HEADER_SIZE + class_size - sizeof(size_t)) = size;
#endif
//Return first block if memory page span
return pointer_offset(span, SPAN_HEADER_SIZE);
}
//! Allocate a large sized memory block from the given heap
static void*
_memory_allocate_large_from_heap(heap_t* heap, size_t size) {
//Calculate number of needed max sized spans (including header)
size += SPAN_HEADER_SIZE;
size_t num_spans = size / SPAN_MAX_SIZE;
if (size % SPAN_MAX_SIZE)
++num_spans;
size_t idx = num_spans - 1;
if (!idx) {
size_t span_class_idx = _span_class_from_page_count(SPAN_MAX_PAGE_COUNT);
span_t* span = heap->span_cache[span_class_idx];
if (!span) {
_memory_deallocate_deferred(heap, 0);
span = heap->span_cache[span_class_idx];
}
if (!span) {
//Step 5: No span available in the thread cache, try grab a list of spans from the global cache
span = _memory_global_cache_extract(SPAN_MAX_PAGE_COUNT);
#if ENABLE_STATISTICS
if (span)
heap->global_to_thread += (size_t)span->data.list_size * SPAN_MAX_PAGE_COUNT * PAGE_SIZE;
#endif
}
if (span) {
if (span->data.list_size > 1) {
//We got a list of spans, we will use first as active and store remainder in thread cache
span_t* next_span = span->next_span;
assert(next_span);
next_span->data.list_size = span->data.list_size - 1;
heap->span_cache[span_class_idx] = next_span;
}
else {
heap->span_cache[span_class_idx] = 0;
}
}
else {
//Step 6: All caches empty, map in new memory pages
span = _memory_map(SPAN_MAX_PAGE_COUNT);
}
//Mark span as owned by this heap and set base data
atomic_store32(&span->heap_id, heap->id);
atomic_thread_fence_release();
span->size_class = SIZE_CLASS_COUNT;
//Track counters
_memory_counter_increase(&heap->span_counter[span_class_idx], &_memory_max_allocation[span_class_idx]);
return pointer_offset(span, SPAN_HEADER_SIZE);
}
use_cache:
//Step 1: Check if cache for this large size class (or the following, unless first class) has a span
while (!heap->large_cache[idx] && (idx < LARGE_CLASS_COUNT) && (idx < num_spans + 1))
++idx;
span_t* span = heap->large_cache[idx];
if (span) {
//Happy path, use from cache
if (span->data.list_size > 1) {
span_t* new_head = span->next_span;
assert(new_head);
new_head->data.list_size = span->data.list_size - 1;
heap->large_cache[idx] = new_head;
}
else {
heap->large_cache[idx] = 0;
}
span->size_class = SIZE_CLASS_COUNT + (count_t)idx;
//Increase counter
_memory_counter_increase(&heap->large_counter[idx], &_memory_max_allocation_large[idx]);
return pointer_offset(span, SPAN_HEADER_SIZE);
}
//Restore index, we're back to smallest fitting span count
idx = num_spans - 1;
//Step 2: Process deferred deallocation
if (_memory_deallocate_deferred(heap, SIZE_CLASS_COUNT + idx))
goto use_cache;
assert(!heap->large_cache[idx]);
//Step 3: Extract a list of spans from global cache
span = _memory_global_cache_large_extract(num_spans);
if (span) {
#if ENABLE_STATISTICS
heap->global_to_thread += (size_t)span->data.list_size * num_spans * SPAN_MAX_SIZE;
#endif
//We got a list from global cache, store remainder in thread cache
if (span->data.list_size > 1) {
span_t* new_head = span->next_span;
assert(new_head);
new_head->prev_span = 0;
new_head->data.list_size = span->data.list_size - 1;
heap->large_cache[idx] = new_head;
}
}
else {
//Step 4: Map in more memory pages
span = _memory_map(num_spans * SPAN_MAX_PAGE_COUNT);
}
//Mark span as owned by this heap
atomic_store32(&span->heap_id, heap->id);
atomic_thread_fence_release();
span->size_class = SIZE_CLASS_COUNT + (count_t)idx;
//Increase counter
_memory_counter_increase(&heap->large_counter[idx], &_memory_max_allocation_large[idx]);
return pointer_offset(span, SPAN_HEADER_SIZE);
}
//! Allocate a new heap
static heap_t*
_memory_allocate_heap(void) {
heap_t* heap;
heap_t* next_heap;
//Try getting an orphaned heap
atomic_thread_fence_acquire();
do {
heap = atomic_load_ptr(&_memory_orphan_heaps);
if (!heap)
break;
next_heap = heap->next_orphan;
}
while (!atomic_cas_ptr(&_memory_orphan_heaps, next_heap, heap));
if (heap) {
heap->next_orphan = 0;
return heap;
}
//Map in pages for a new heap
heap = _memory_map(2);
memset(heap, 0, sizeof(heap_t));
//Get a new heap ID
do {
heap->id = atomic_incr32(&_memory_heap_id);
if (_memory_heap_lookup(heap->id))
heap->id = 0;
}
while (!heap->id);
//Link in heap in heap ID map
size_t list_idx = heap->id % HEAP_ARRAY_SIZE;
do {
next_heap = atomic_load_ptr(&_memory_heaps[list_idx]);
heap->next_heap = next_heap;
}
while (!atomic_cas_ptr(&_memory_heaps[list_idx], heap, next_heap));
return heap;
}
//! Add a span to a double linked list
static void
_memory_list_add(span_t** head, span_t* span) {
if (*head) {
(*head)->prev_span = span;
span->next_span = *head;
}
else {
span->next_span = 0;
}
*head = span;
}
//! Remove a span from a double linked list
static void
_memory_list_remove(span_t** head, span_t* span) {
if (*head == span) {
*head = span->next_span;
}
else {
if (span->next_span)
span->next_span->prev_span = span->prev_span;
span->prev_span->next_span = span->next_span;
}
}
//! Insert span into thread cache, releasing to global cache if overflow
static void
_memory_heap_cache_insert(heap_t* heap, span_t* span, size_t page_count) {
#if MAX_SPAN_CACHE_DIVISOR == 0
(void)sizeof(heap);
_memory_global_cache_insert(span, 1, page_count);
#else
size_t span_class_idx = _span_class_from_page_count(page_count);
span_t** cache = &heap->span_cache[span_class_idx];
span->next_span = *cache;
if (*cache)
span->data.list_size = (*cache)->data.list_size + 1;
else
span->data.list_size = 1;
*cache = span;
#if MAX_SPAN_CACHE_DIVISOR > 1
//Check if cache exceeds limit
if ((span->data.list_size >= (MIN_SPAN_CACHE_RELEASE + MIN_SPAN_CACHE_SIZE)) &&
(span->data.list_size > heap->span_counter[span_class_idx].cache_limit)) {
//Release to global cache
count_t list_size = 1;
span_t* next = span->next_span;
span_t* last = span;
while (list_size < MIN_SPAN_CACHE_RELEASE) {
last = next;
next = next->next_span;
++list_size;
}
next->data.list_size = span->data.list_size - list_size;
last->next_span = 0; //Terminate list
*cache = next;
_memory_global_cache_insert(span, list_size, page_count);
#if ENABLE_STATISTICS
heap->thread_to_global += list_size * page_count * PAGE_SIZE;
#endif
}
#endif
#endif
}
//! Deallocate the given small/medium memory block from the given heap
static void
_memory_deallocate_to_heap(heap_t* heap, span_t* span, void* p) {
//Check if span is the currently active span in order to operate
//on the correct bookkeeping data
const count_t class_idx = span->size_class;
size_class_t* size_class = _memory_size_class + class_idx;
int is_active = (heap->active_span[class_idx] == span);
span_block_t* block_data = is_active ?
heap->active_block + class_idx :
&span->data.block;
#if ENABLE_STATISTICS
heap->allocated -= size_class->size;
heap->requested -= *(size_t*)pointer_offset(p, size_class->size - sizeof(size_t));
#endif
//Check if the span will become completely free
if (block_data->free_count == ((count_t)size_class->block_count - 1)) {
//Track counters
size_t span_class_idx = _span_class_from_page_count(size_class->page_count);
assert(heap->span_counter[span_class_idx].current_allocations > 0);
--heap->span_counter[span_class_idx].current_allocations;
//If it was active, reset counter. Otherwise, if not active, remove from
//partial free list if we had a previous free block (guard for classes with only 1 block)
if (is_active)
block_data->free_count = 0;
else if (block_data->free_count > 0)
_memory_list_remove(&heap->size_cache[class_idx], span);
//Add to span cache
_memory_heap_cache_insert(heap, span, size_class->page_count);
return;
}
//Check if first free block for this span (previously fully allocated)
if (block_data->free_count == 0) {
//add to free list and disable autolink
_memory_list_add(&heap->size_cache[class_idx], span);
block_data->first_autolink = (uint16_t)size_class->block_count;
}
++block_data->free_count;
//Span is not yet completely free, so add block to the linked list of free blocks
void* blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
count_t block_offset = (count_t)pointer_diff(p, blocks_start);
count_t block_idx = block_offset / (count_t)size_class->size;
uint32_t* block = pointer_offset(blocks_start, block_idx * size_class->size);
*block = block_data->free_list;
block_data->free_list = (uint16_t)block_idx;
}
//! Deallocate the given large memory block from the given heap
static void
_memory_deallocate_large_to_heap(heap_t* heap, span_t* span) {
//Check if aliased with 64KiB small/medium spans
if (span->size_class == SIZE_CLASS_COUNT) {
//Track counters
size_t span_class_idx = _span_class_from_page_count(SPAN_MAX_PAGE_COUNT);
--heap->span_counter[span_class_idx].current_allocations;
//Add to span cache
_memory_heap_cache_insert(heap, span, SPAN_MAX_PAGE_COUNT);
return;
}
//Decrease counter
size_t idx = span->size_class - SIZE_CLASS_COUNT;
span_counter_t* counter = heap->large_counter + idx;
assert(counter->current_allocations > 0);
--counter->current_allocations;
#if MAX_SPAN_CACHE_DIVISOR == 0
_memory_global_cache_large_insert(span, 1, idx + 1);
#else
//Insert into cache list
span_t** cache = heap->large_cache + idx;
span->next_span = *cache;
if (*cache)
span->data.list_size = (*cache)->data.list_size + 1;
else
span->data.list_size = 1;
*cache = span;
#if MAX_SPAN_CACHE_DIVISOR > 1
//Check if cache exceeds limit
if ((span->data.list_size >= (MIN_SPAN_CACHE_RELEASE + MIN_SPAN_CACHE_SIZE)) &&
(span->data.list_size > counter->cache_limit)) {
//Release to global cache
count_t list_size = 1;
span_t* next = span->next_span;
span_t* last = span;
while (list_size < MIN_SPAN_CACHE_RELEASE) {
last = next;
next = next->next_span;
++list_size;
}
assert(next->next_span);
next->data.list_size = span->data.list_size - list_size;
last->next_span = 0; //Terminate list
*cache = next;
_memory_global_cache_large_insert(span, list_size, idx + 1);
#if ENABLE_STATISTICS
heap->thread_to_global += list_size * (idx + 1) * SPAN_MAX_SIZE;
#endif
}
#endif
#endif
}
//! Process pending deferred cross-thread deallocations
static int
_memory_deallocate_deferred(heap_t* heap, size_t size_class) {
//Grab the current list of deferred deallocations
atomic_thread_fence_acquire();
void* p = atomic_load_ptr(&heap->defer_deallocate);
if (!p)
return 0;
if (!atomic_cas_ptr(&heap->defer_deallocate, 0, p))
return 0;
//Keep track if we deallocate in the given size class
int got_class = 0;
do {
void* next = *(void**)p;
//Get span and check which type of block
span_t* span = (void*)((uintptr_t)p & SPAN_MASK);
if (span->size_class < SIZE_CLASS_COUNT) {
//Small/medium block
got_class |= (span->size_class == size_class);
_memory_deallocate_to_heap(heap, span, p);
}
else {
//Large block
got_class |= ((span->size_class >= size_class) && (span->size_class <= (size_class + 2)));
_memory_deallocate_large_to_heap(heap, span);
}
//Loop until all pending operations in list are processed
p = next;
} while (p);
return got_class;
}
//! Defer deallocation of the given block to the given heap
static void
_memory_deallocate_defer(int32_t heap_id, void* p) {
//Get the heap and link in pointer in list of deferred opeations
heap_t* heap = _memory_heap_lookup(heap_id);
void* last_ptr;
do {
last_ptr = atomic_load_ptr(&heap->defer_deallocate);
*(void**)p = last_ptr; //Safe to use block, it's being deallocated
} while (!atomic_cas_ptr(&heap->defer_deallocate, p, last_ptr));
}
//! Allocate a block of the given size
static void*
_memory_allocate(size_t size) {
if (size <= MEDIUM_SIZE_LIMIT)
return _memory_allocate_from_heap(_memory_thread_heap, size);
else if (size <= LARGE_SIZE_LIMIT)
return _memory_allocate_large_from_heap(_memory_thread_heap, size);
//Oversized, allocate pages directly
size += SPAN_HEADER_SIZE;
size_t num_pages = size / PAGE_SIZE;
if (size % PAGE_SIZE)
++num_pages;
span_t* span = _memory_map(num_pages);
atomic_store32(&span->heap_id, 0);
//Store page count in next_span
span->next_span = (span_t*)((uintptr_t)num_pages);
return pointer_offset(span, SPAN_HEADER_SIZE);
}
//! Deallocate the given block
static void
_memory_deallocate(void* p) {
if (!p)
return;
//Grab the span (always at start of span, using 64KiB alignment)
span_t* span = (void*)((uintptr_t)p & SPAN_MASK);
int32_t heap_id = atomic_load32(&span->heap_id);
heap_t* heap = _memory_thread_heap;
//Check if block belongs to this heap or if deallocation should be deferred
if (heap_id == heap->id) {
if (span->size_class < SIZE_CLASS_COUNT)
_memory_deallocate_to_heap(heap, span, p);
else
_memory_deallocate_large_to_heap(heap, span);
}
else if (heap_id > 0) {
_memory_deallocate_defer(heap_id, p);
}
else {
//Oversized allocation, page count is stored in next_span
size_t num_pages = (size_t)span->next_span;
_memory_unmap(span, num_pages);
}
}
//! Reallocate the given block to the given size
static void*
_memory_reallocate(void* p, size_t size, size_t oldsize, unsigned int flags) {
if (p) {
//Grab the span (always at start of span, using 64KiB alignment)
span_t* span = (void*)((uintptr_t)p & SPAN_MASK);
int32_t heap_id = atomic_load32(&span->heap_id);
if (heap_id) {
if (span->size_class < SIZE_CLASS_COUNT) {
//Small/medium sized block
size_class_t* size_class = _memory_size_class + span->size_class;
if ((size_t)size_class->size >= size)
return p; //Still fits in block, never mind trying to save memory
if (!oldsize)
oldsize = size_class->size;
}
else {
//Large block
size_t total_size = size + SPAN_HEADER_SIZE;
size_t num_spans = total_size / SPAN_MAX_SIZE;
if (total_size % SPAN_MAX_SIZE)
++num_spans;
size_t current_spans = (span->size_class - SIZE_CLASS_COUNT) + 1;
if ((current_spans >= num_spans) && (num_spans >= (current_spans / 2)))
return p; //Still fits and less than half of memory would be freed
if (!oldsize)
oldsize = (current_spans * (size_t)SPAN_MAX_SIZE) - SPAN_HEADER_SIZE;
}
}
else {
//Oversized block
size_t total_size = size + SPAN_HEADER_SIZE;
size_t num_pages = total_size / PAGE_SIZE;
if (total_size % PAGE_SIZE)
++num_pages;
//Page count is stored in next_span
size_t current_pages = (size_t)span->next_span;
if ((current_pages >= num_pages) && (num_pages >= (current_pages / 2)))
return p; //Still fits and less than half of memory would be freed
if (!oldsize)
oldsize = (current_pages * (size_t)PAGE_SIZE) - SPAN_HEADER_SIZE;
}
}
//Size is greater than block size, need to allocate a new block and deallocate the old
//Avoid hysteresis by overallocating if increase is small (below 37%)
size_t lower_bound = oldsize + (oldsize >> 2) + (oldsize >> 3);
void* block = _memory_allocate(size > lower_bound ? size : lower_bound);
if (p) {
if (!(flags & RPMALLOC_NO_PRESERVE))
memcpy(block, p, oldsize < size ? oldsize : size);
_memory_deallocate(p);
}
return block;
}
//! Get the usable size of the given block
static size_t
_memory_usable_size(void* p) {
//Grab the span (always at start of span, using 64KiB alignment)
span_t* span = (void*)((uintptr_t)p & SPAN_MASK);
int32_t heap_id = atomic_load32(&span->heap_id);
if (heap_id) {
if (span->size_class < SIZE_CLASS_COUNT) {
//Small/medium block
size_class_t* size_class = _memory_size_class + span->size_class;
return size_class->size;
}
//Large block
size_t current_spans = (span->size_class - SIZE_CLASS_COUNT) + 1;
return (current_spans * (size_t)SPAN_MAX_SIZE) - SPAN_HEADER_SIZE;
}
//Oversized block, page count is stored in next_span
size_t current_pages = (size_t)span->next_span;
return (current_pages * (size_t)PAGE_SIZE) - SPAN_HEADER_SIZE;
}
//! Adjust and optimize the size class properties for the given class
static void
_memory_adjust_size_class(size_t iclass) {
//Calculate how many pages are needed for 255 blocks
size_t block_size = _memory_size_class[iclass].size;
size_t page_count = (block_size * 255) / PAGE_SIZE;
//Cap to 16 pages (64KiB span granularity)
page_count = (page_count == 0) ? 1 : ((page_count > 16) ? 16 : page_count);
//Merge page counts to span size class granularity
page_count = ((page_count + (SPAN_CLASS_GRANULARITY - 1)) / SPAN_CLASS_GRANULARITY) * SPAN_CLASS_GRANULARITY;
if (page_count > 16)
page_count = 16;
size_t block_count = ((page_count * PAGE_SIZE) - SPAN_HEADER_SIZE) / block_size;
//Store the final configuration
_memory_size_class[iclass].page_count = (uint16_t)page_count;
_memory_size_class[iclass].block_count = (uint16_t)block_count;
_memory_size_class[iclass].class_idx = (uint16_t)iclass;
//Check if previous size classes can be merged
size_t prevclass = iclass;
while (prevclass > 0) {
--prevclass;
//A class can be merged if number of pages and number of blocks are equal
if ((_memory_size_class[prevclass].page_count == _memory_size_class[iclass].page_count) &&
(_memory_size_class[prevclass].block_count == _memory_size_class[iclass].block_count)) {
memcpy(_memory_size_class + prevclass, _memory_size_class + iclass, sizeof(_memory_size_class[iclass]));
}
else {
break;
}
}
}
#if defined( _WIN32 ) || defined( __WIN32__ ) || defined( _WIN64 )
# include
#else
# include
# include
# include
# ifndef MAP_UNINITIALIZED
# define MAP_UNINITIALIZED 0
# endif
#endif
//! Initialize the allocator and setup global data
int
rpmalloc_initialize(void) {
#ifdef PLATFORM_WINDOWS
SYSTEM_INFO system_info;
memset(&system_info, 0, sizeof(system_info));
GetSystemInfo(&system_info);
if (system_info.dwAllocationGranularity < SPAN_ADDRESS_GRANULARITY)
return -1;
#else
#if ARCH_64BIT
atomic_store64(&_memory_addr, 0x1000000000ULL);
#else
atomic_store64(&_memory_addr, 0x1000000ULL);
#endif
#endif
atomic_store32(&_memory_heap_id, 0);
//Setup all small and medium size classes
size_t iclass;
for (iclass = 0; iclass < SMALL_CLASS_COUNT; ++iclass) {
size_t size = (iclass + 1) * SMALL_GRANULARITY;
_memory_size_class[iclass].size = (uint16_t)size;
_memory_adjust_size_class(iclass);
}
for (iclass = 0; iclass < MEDIUM_CLASS_COUNT; ++iclass) {
size_t size = SMALL_SIZE_LIMIT + ((iclass + 1) * MEDIUM_GRANULARITY);
if (size > MEDIUM_SIZE_LIMIT)
size = MEDIUM_SIZE_LIMIT;
_memory_size_class[SMALL_CLASS_COUNT + iclass].size = (uint16_t)size;
_memory_adjust_size_class(SMALL_CLASS_COUNT + iclass);
}
//Initialize this thread
rpmalloc_thread_initialize();
return 0;
}
//! Finalize the allocator
void
rpmalloc_finalize(void) {
atomic_thread_fence_acquire();
//Free all thread caches
for (size_t list_idx = 0; list_idx < HEAP_ARRAY_SIZE; ++list_idx) {
heap_t* heap = atomic_load_ptr(&_memory_heaps[list_idx]);
while (heap) {
_memory_deallocate_deferred(heap, 0);
for (size_t iclass = 0; iclass < SPAN_CLASS_COUNT; ++iclass) {
const size_t page_count = (iclass + 1) * SPAN_CLASS_GRANULARITY;
span_t* span = heap->span_cache[iclass];
unsigned int span_count = span ? span->data.list_size : 0;
for (unsigned int ispan = 0; ispan < span_count; ++ispan) {
span_t* next_span = span->next_span;
_memory_unmap(span, page_count);
span = next_span;
}
}
//Free large spans
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
const size_t span_count = iclass + 1;
span_t* span = heap->large_cache[iclass];
while (span) {
span_t* next_span = span->next_span;
_memory_unmap(span, span_count * SPAN_MAX_PAGE_COUNT);
span = next_span;
}
}
heap_t* next_heap = heap->next_heap;
_memory_unmap(heap, 2);
heap = next_heap;
}
atomic_store_ptr(&_memory_heaps[list_idx], 0);
}
atomic_store_ptr(&_memory_orphan_heaps, 0);
//Free global caches
for (size_t iclass = 0; iclass < SPAN_CLASS_COUNT; ++iclass) {
void* span_ptr = atomic_load_ptr(&_memory_span_cache[iclass]);
size_t cache_count = (uintptr_t)span_ptr & ~SPAN_MASK;
span_t* span = (span_t*)((void*)((uintptr_t)span_ptr & SPAN_MASK));
while (cache_count) {
span_t* skip_span = span->prev_span;
unsigned int span_count = span->data.list_size;
for (unsigned int ispan = 0; ispan < span_count; ++ispan) {
span_t* next_span = span->next_span;
_memory_unmap(span, (iclass + 1) * SPAN_CLASS_GRANULARITY);
span = next_span;
}
span = skip_span;
cache_count -= span_count;
}
atomic_store_ptr(&_memory_span_cache[iclass], 0);
}
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
void* span_ptr = atomic_load_ptr(&_memory_large_cache[iclass]);
size_t cache_count = (uintptr_t)span_ptr & ~SPAN_MASK;
span_t* span = (span_t*)((void*)((uintptr_t)span_ptr & SPAN_MASK));
while (cache_count) {
span_t* skip_span = span->prev_span;
unsigned int span_count = span->data.list_size;
for (unsigned int ispan = 0; ispan < span_count; ++ispan) {
span_t* next_span = span->next_span;
_memory_unmap(span, (iclass + 1) * SPAN_MAX_PAGE_COUNT);
span = next_span;
}
span = skip_span;
cache_count -= span_count;
}
atomic_store_ptr(&_memory_large_cache[iclass], 0);
}
atomic_thread_fence_release();
}
//! Initialize thread, assign heap
void
rpmalloc_thread_initialize(void) {
if (!_memory_thread_heap) {
heap_t* heap = _memory_allocate_heap();
#if ENABLE_STATISTICS
heap->thread_to_global = 0;
heap->global_to_thread = 0;
#endif
_memory_thread_heap = heap;
atomic_incr32(&_memory_active_heaps);
}
}
//! Finalize thread, orphan heap
void
rpmalloc_thread_finalize(void) {
heap_t* heap = _memory_thread_heap;
if (!heap)
return;
atomic_add32(&_memory_active_heaps, -1);
_memory_deallocate_deferred(heap, 0);
//Release thread cache spans back to global cache
for (size_t iclass = 0; iclass < SPAN_CLASS_COUNT; ++iclass) {
const size_t page_count = (iclass + 1) * SPAN_CLASS_GRANULARITY;
span_t* span = heap->span_cache[iclass];
while (span) {
if (span->data.list_size > MIN_SPAN_CACHE_RELEASE) {
count_t list_size = 1;
span_t* next = span->next_span;
span_t* last = span;
while (list_size < MIN_SPAN_CACHE_RELEASE) {
last = next;
next = next->next_span;
++list_size;
}
last->next_span = 0; //Terminate list
next->data.list_size = span->data.list_size - list_size;
_memory_global_cache_insert(span, list_size, page_count);
span = next;
}
else {
_memory_global_cache_insert(span, span->data.list_size, page_count);
span = 0;
}
}
heap->span_cache[iclass] = 0;
}
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
const size_t span_count = iclass + 1;
span_t* span = heap->large_cache[iclass];
while (span) {
if (span->data.list_size > MIN_SPAN_CACHE_RELEASE) {
count_t list_size = 1;
span_t* next = span->next_span;
span_t* last = span;
while (list_size < MIN_SPAN_CACHE_RELEASE) {
last = next;
next = next->next_span;
++list_size;
}
last->next_span = 0; //Terminate list
next->data.list_size = span->data.list_size - list_size;
_memory_global_cache_large_insert(span, list_size, span_count);
span = next;
}
else {
_memory_global_cache_large_insert(span, span->data.list_size, span_count);
span = 0;
}
}
heap->large_cache[iclass] = 0;
}
//Reset allocation counters
memset(heap->span_counter, 0, sizeof(heap->span_counter));
memset(heap->large_counter, 0, sizeof(heap->large_counter));
#if ENABLE_STATISTICS
heap->requested = 0;
heap->allocated = 0;
heap->thread_to_global = 0;
heap->global_to_thread = 0;
#endif
//Orphan the heap
heap_t* last_heap;
do {
last_heap = atomic_load_ptr(&_memory_orphan_heaps);
heap->next_orphan = last_heap;
}
while (!atomic_cas_ptr(&_memory_orphan_heaps, heap, last_heap));
_memory_thread_heap = 0;
}
int
rpmalloc_is_thread_initialized(void) {
return (_memory_thread_heap != 0) ? 1 : 0;
}
//! Map new pages to virtual memory
static void*
_memory_map(size_t page_count) {
size_t total_size = page_count * PAGE_SIZE;
void* pages_ptr = 0;
#if ENABLE_STATISTICS
atomic_add32(&_mapped_pages, (int32_t)page_count);
atomic_add32(&_mapped_total, (int32_t)page_count);
#endif
#ifdef PLATFORM_WINDOWS
pages_ptr = VirtualAlloc(0, total_size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
#else
//mmap lacks a way to set 64KiB address granularity, implement it locally
intptr_t incr = (intptr_t)total_size / (intptr_t)SPAN_ADDRESS_GRANULARITY;
if (total_size % SPAN_ADDRESS_GRANULARITY)
++incr;
do {
void* base_addr = (void*)(uintptr_t)atomic_exchange_and_add64(&_memory_addr,
(incr * (intptr_t)SPAN_ADDRESS_GRANULARITY));
pages_ptr = mmap(base_addr, total_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_UNINITIALIZED, -1, 0);
if (pages_ptr != MAP_FAILED) {
if (pages_ptr != base_addr) {
void* new_base = (void*)((uintptr_t)pages_ptr & SPAN_MASK);
atomic_store64(&_memory_addr, (int64_t)((uintptr_t)new_base) +
((incr + 1) * (intptr_t)SPAN_ADDRESS_GRANULARITY));
atomic_thread_fence_release();
}
if (!((uintptr_t)pages_ptr & ~SPAN_MASK))
break;
munmap(pages_ptr, total_size);
}
}
while (1);
#endif
return pages_ptr;
}
//! Unmap pages from virtual memory
static void
_memory_unmap(void* ptr, size_t page_count) {
#if ENABLE_STATISTICS
atomic_add32(&_mapped_pages, -(int32_t)page_count);
atomic_add32(&_unmapped_total, (int32_t)page_count);
#endif
#ifdef PLATFORM_WINDOWS
VirtualFree(ptr, 0, MEM_RELEASE);
#else
munmap(ptr, PAGE_SIZE * page_count);
#endif
}
static FORCEINLINE int
atomic_cas_ptr(atomicptr_t* dst, void* val, void* ref) {
#ifdef _MSC_VER
# if ARCH_64BIT
return (_InterlockedCompareExchange64((volatile long long*)&dst->nonatomic,
(long long)val, (long long)ref) == (long long)ref) ? 1 : 0;
# else
return (_InterlockedCompareExchange((volatile long*)&dst->nonatomic,
(long)val, (long)ref) == (long)ref) ? 1 : 0;
# endif
#else
return __sync_bool_compare_and_swap(&dst->nonatomic, ref, val);
#endif
}
//! Yield the thread remaining timeslice
static void
thread_yield(void) {
#ifdef PLATFORM_WINDOWS
YieldProcessor();
#else
sched_yield();
#endif
}
// Extern interface
void*
rpmalloc(size_t size) {
#if ENABLE_VALIDATE_ARGS
if (size >= MAX_ALLOC_SIZE) {
errno = EINVAL;
return 0;
}
#endif
return _memory_allocate(size);
}
void
rpfree(void* ptr) {
_memory_deallocate(ptr);
}
void*
rpcalloc(size_t num, size_t size) {
size_t total;
#if ENABLE_VALIDATE_ARGS
#ifdef PLATFORM_WINDOWS
int err = SizeTMult(num, size, &total);
if ((err != S_OK) || (total >= MAX_ALLOC_SIZE)) {
errno = EINVAL;
return 0;
}
#else
int err = __builtin_umull_overflow(num, size, &total);
if (err || (total >= MAX_ALLOC_SIZE)) {
errno = EINVAL;
return 0;
}
#endif
#else
total = num * size;
#endif
void* ptr = _memory_allocate(total);
memset(ptr, 0, total);
return ptr;
}
void*
rprealloc(void* ptr, size_t size) {
#if ENABLE_VALIDATE_ARGS
if (size >= MAX_ALLOC_SIZE) {
errno = EINVAL;
return ptr;
}
#endif
return _memory_reallocate(ptr, size, 0, 0);
}
void*
rpaligned_realloc(void* ptr, size_t alignment, size_t size, size_t oldsize,
unsigned int flags) {
#if ENABLE_VALIDATE_ARGS
if (size + alignment < size) {
errno = EINVAL;
return 0;
}
#endif
//TODO: If alignment > 16, we need to copy to new aligned position
(void)sizeof(alignment);
return _memory_reallocate(ptr, size, oldsize, flags);
}
void*
rpaligned_alloc(size_t alignment, size_t size) {
if (alignment <= 16)
return rpmalloc(size);
#if ENABLE_VALIDATE_ARGS
if (size + alignment < size) {
errno = EINVAL;
return 0;
}
#endif
void* ptr = rpmalloc(size + alignment);
if ((uintptr_t)ptr & (alignment - 1))
ptr = (void*)(((uintptr_t)ptr & ~((uintptr_t)alignment - 1)) + alignment);
return ptr;
}
void*
rpmemalign(size_t alignment, size_t size) {
return rpaligned_alloc(alignment, size);
}
int
rpposix_memalign(void **memptr, size_t alignment, size_t size) {
if (memptr)
*memptr = rpaligned_alloc(alignment, size);
else
return EINVAL;
return *memptr ? 0 : ENOMEM;
}
size_t
rpmalloc_usable_size(void* ptr) {
return ptr ? _memory_usable_size(ptr) : 0;
}
void
rpmalloc_thread_collect(void) {
_memory_deallocate_deferred(_memory_thread_heap, 0);
}
void
rpmalloc_thread_statistics(rpmalloc_thread_statistics_t* stats) {
memset(stats, 0, sizeof(rpmalloc_thread_statistics_t));
heap_t* heap = _memory_thread_heap;
#if ENABLE_STATISTICS
stats->allocated = heap->allocated;
stats->requested = heap->requested;
#endif
void* p = atomic_load_ptr(&heap->defer_deallocate);
while (p) {
void* next = *(void**)p;
span_t* span = (void*)((uintptr_t)p & SPAN_MASK);
stats->deferred += _memory_size_class[span->size_class].size;
p = next;
}
for (size_t isize = 0; isize < SIZE_CLASS_COUNT; ++isize) {
if (heap->active_block[isize].free_count)
stats->active += heap->active_block[isize].free_count * _memory_size_class[heap->active_span[isize]->size_class].size;
span_t* cache = heap->size_cache[isize];
while (cache) {
stats->sizecache = cache->data.block.free_count * _memory_size_class[cache->size_class].size;
cache = cache->next_span;
}
}
for (size_t isize = 0; isize < SPAN_CLASS_COUNT; ++isize) {
if (heap->span_cache[isize])
stats->spancache = (size_t)heap->span_cache[isize]->data.list_size * (isize + 1) * SPAN_CLASS_GRANULARITY * PAGE_SIZE;
}
}
void
rpmalloc_global_statistics(rpmalloc_global_statistics_t* stats) {
memset(stats, 0, sizeof(rpmalloc_global_statistics_t));
#if ENABLE_STATISTICS
stats->mapped = (size_t)atomic_load32(&_mapped_pages) * PAGE_SIZE;
stats->mapped_total = (size_t)atomic_load32(&_mapped_total) * PAGE_SIZE;
stats->unmapped_total = (size_t)atomic_load32(&_unmapped_total) * PAGE_SIZE;
#endif
for (size_t iclass = 0; iclass < SPAN_CLASS_COUNT; ++iclass) {
void* global_span_ptr = atomic_load_ptr(&_memory_span_cache[iclass]);
while (global_span_ptr == SPAN_LIST_LOCK_TOKEN) {
thread_yield();
global_span_ptr = atomic_load_ptr(&_memory_span_cache[iclass]);
}
uintptr_t global_span_count = (uintptr_t)global_span_ptr & ~SPAN_MASK;
size_t list_bytes = global_span_count * (iclass + 1) * SPAN_CLASS_GRANULARITY * PAGE_SIZE;
stats->cached += list_bytes;
}
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
void* global_span_ptr = atomic_load_ptr(&_memory_large_cache[iclass]);
while (global_span_ptr == SPAN_LIST_LOCK_TOKEN) {
thread_yield();
global_span_ptr = atomic_load_ptr(&_memory_large_cache[iclass]);
}
uintptr_t global_span_count = (uintptr_t)global_span_ptr & ~SPAN_MASK;
size_t list_bytes = global_span_count * (iclass + 1) * SPAN_MAX_PAGE_COUNT * PAGE_SIZE;
stats->cached_large += list_bytes;
}
}