
s.SnpEff.4.3.1.source-code.snpEff_summary.ftl Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of SnpEff Show documentation
Show all versions of SnpEff Show documentation
Variant annotation and effect prediction package.
The newest version!
<#-- snpEff summary statistics -->
<#macro countByType counter>
Type (alphabetical order)
Count
Percent
<#list counter.typeList as type>
${type}
${counter.get(type)}
${ ( 100 * counter.percent(type) )?string("0.###") }%
#list>
#macro>
<#macro intstatsTable intstats>
<#if intstats.validData>
Min ${intstats.min}
Max ${intstats.max}
Mean ${intstats.mean}
Median ${intstats.median}
Standard deviation ${intstats.std}
Values ${intstats.toStringValues()}
Count ${intstats.toStringCounts()}
#if>
#macro>
SnpEff: Variant analysis
Summary
Genome
${genomeVersion}
Date
${date}
SnpEff version
${version}
Command line arguments
${args}
Warnings
<#assign color="#ffffff">
<#if changeStats.countWarnings > 0> <#assign color="#ffff00"> #if>
${changeStats.countWarnings}
Errors
<#assign color="#dddddd">
<#if changeStats.countErrors > 0> <#assign color="#ff0000"> #if>
${changeStats.countErrors}
Number of lines (input file)
${countInputLines}
Number of variants (before filter)
${countVariants}
Number of not variants
(i.e. reference equals alternative)
${variantStats.countNonVariants}
Number of variants processed
(i.e. after filter and non-variants)
${variantStats.count}
Number of known variants
(i.e. non-empty ID)
${variantStats.countNonEmptyId}
( ${ ( 100 * variantStats.getKnownRatio() )?string("0.###") }% )
Number of multi-allelic VCF entries
(i.e. more than two alleles)
${vcfStats.countMultiallelic}
Number of effects
${countEffects}
Genome total length
${variantStats.genomeLen}
Genome effective length
${variantStats.genomeLenEffective}
Variant rate
1 variant every ${variantStats.rateOfChange} bases
Variants rate details
Chromosome Length Variants Variants rate
<#list variantStats.chromosomeNamesEffective as chr>
${chr}
${variantStats.getChromosomeLength(chr)}
${variantStats.getCountByChromosome(chr)}
${variantStats.getRateOfChangeByChromosome(chr)}
#list>
Total
${variantStats.genomeLenEffective}
${variantStats.count}
${variantStats.rateOfChange}
Number variants by type
Type
Total
<#list variantStats.changeType as chType>
${chType}
${variantStats.countByChangeType.get(chType)}
#list>
Total
${variantStats.countByChangeType.get("Total")}
Number of effects by impact
<@countByType changeStats.countByImpact />
Number of effects by functional class
<@countByType changeStats.countByFunctionalClass />
Missense / Silent ratio: ${changeStats.silentRatio?string("0.####")}
Number of effects by type and region
Type
Region
<@countByType changeStats.countByEffect />
<@countByType changeStats.countByGeneRegion />

Quality:
<@intstatsTable vcfStats.qualityStats />

Insertions and deletions length:
<@intstatsTable variantStats.indelLen />

Base changes (SNPs)
<#list variantStats.bases as newBase > ${newBase} #list>
<#list variantStats.bases as oldBase >
${oldBase} <#list variantStats.bases as newBase > ${variantStats.getBasesChangesCount(oldBase, newBase)} #list>
#list>
Ts/Tv (transitions / transversions)
Note: Only SNPs are used for this statistic.
Note: This Ts/Tv ratio is a 'raw' ratio (ratio of observed events).
Transitions ${vcfStats.tsTvStats.transitions}
Transversions ${vcfStats.tsTvStats.transversions}
Ts/Tv ratio ${vcfStats.tsTvStats.tsTvRatio?string("0.####")}
<#assign tstv=vcfStats.hasData()>
<#if tstv>
All variants:
${vcfStats.tsTvStats}
Only known variants (i.e. the ones having a non-empty ID field):
${vcfStats.tsTvStatsKnown}
#if>
Allele frequency
<#assign af=vcfStats.hasData()>
<#if af>

<@intstatsTable vcfStats.genotypeStats.alleleFrequency />
#if>
Allele Count
<#if af>

<@intstatsTable vcfStats.genotypeStats.alleleCount />
#if>
Hom/Het per sample
<#if af>



${vcfStats.genotypeStats.homHetTable}
#if>
Codon changes
How to read this table:
- Rows are reference codons and columns are changed codons. E.g. Row 'AAA' column 'TAA' indicates how many 'AAA' codons have been replaced by 'TAA' codons.
- Red background colors indicate that more changes happened (heat-map).
- Diagonals are indicated using grey background color
- WARNING: This table may include different translation codon tables (e.g. mamalian DNA and mitochondrial DNA).
<#list changeStats.codonList as newCodon> ${newCodon} #list>
<#list changeStats.codonList as oldCodon>
${oldCodon}
<#list changeStats.codonList as newCodon>
<#assign count = changeStats.getCodonChangeCount(oldCodon, newCodon)>
<#if count == 0>
<#assign count=" ">
#if>
<#if oldCodon == newCodon>
${count}
<#else>
${count}
#if>
#list>
#list>
Amino acid changes
How to read this table:
- Rows are reference amino acids and columns are changed amino acids. E.g. Row 'A' column 'E' indicates how many 'A' amino acids have been replaced by 'E' amino acids.
- Red background colors indicate that more changes happened (heat-map).
- Diagonals are indicated using grey background color
- WARNING: This table may include different translation codon tables (e.g. mamalian DNA and mitochondrial DNA).
<#list changeStats.aaList as newAa> ${newAa} #list>
<#list changeStats.aaList as oldAa>
${oldAa}
<#list changeStats.aaList as newAa>
<#assign count = changeStats.getAaChangeCount(oldAa, newAa)>
<#if count == 0>
<#assign count=" ">
#if>
<#if oldAa == newAa>
${count}
<#else>
${count}
#if>
#list>
#list>
<#if chromoPlots>
Variants by chromosome
<#list variantStats.chromosomeNamesEffective as chr>
<#assign chrStats = variantStats.getChrPosStats(chr)>

${chrStats}
#list>
#if>
Details by gene
Here you can find a tab-separated table.
© 2015 - 2025 Weber Informatics LLC | Privacy Policy