angch.venice.1.12.30.source-code.matcher.lisp Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of venice Show documentation
Show all versions of venice Show documentation
Venice, a sandboxed Lisp implemented in Java.
;; https://www.jdoodle.com/execute-clisp-online/
;; https://www.tutorialspoint.com/execute_lisp_online.php
(defun variable-p (expr)
(and (symbolp expr) (not (eq expr 'd))
(let ((name (symbol-name expr)))
(and (= (length name) 1) (alpha-char-p (char name 0))))))
(defun match-variable (var input bindings)
(let ((binding (assoc var bindings)))
(cond ((null binding) (cons (cons var input) bindings))
((equal input (cdr binding)) bindings))))
(defun match* (pattern input &optional (bindings '((dummy . dummy))))
(cond ((null bindings) nil)
((variable-p pattern) (match-variable pattern input bindings))
((eql pattern input) bindings)
((and (consp pattern) (consp input))
(match* (rest pattern)
(rest input)
(match* (first pattern)
(first input)
bindings)))))
(defun match (pattern input)
(let ((result (match* pattern input)))
(and result (or (butlast result) t))))
(defun apply-rule (input rules)
(loop for (pattern replacement) in rules
for bindings = (match* pattern input)
thereis (and bindings (sublis bindings replacement))))
(defparameter *rules* nil)
(defun transform (expr &optional (*rules* *rules*))
(transform* expr))
(defun transform* (expr)
(if (atom expr)
expr
(transform-expr (mapcar #'transform* expr))))
(defun transform-expr (expr)
(cond ((transform* (apply-rule expr *rules*)))
((evaluable expr) (eval expr))
(t expr)))
(defun evaluable (expr)
(and (every #'numberp (rest expr))
(or (member (first expr) '(+ - * /))
(and (eq (first expr) 'expt)
(integerp (third expr))))))
(defparameter *simple-diff-rules*
'(((D x x) 1)
((D (+ u v) x) (+ (D u x) (D v x)))
((D (* u v) x) (+ (* (D u x) v) (* u (D v x))))
((D (/ v) x) (- (/ (D v x) (* v v))))
((D u x) 0)
;;((D (sin u) x) (* (cos u) (D u x)))
;;((D (exp u) x) (* (exp u) (D u x)))
;;((D (log u) x) (* (/ u) (D u x)))
))
(defparameter *chain-diff-rules*
(loop for (in out) in '(((exp u) (exp u))
((log u) (/ u))
((sin u) (cos u))
((cos u) (- (sin u))))
collect `((D ,in x) (* ,out (D u x)))))
(defparameter *diff-rules*
(append (butlast *simple-diff-rules*)
*chain-diff-rules*
(last *simple-diff-rules*)))
(defparameter *input-rules*
'(((+ x y z . w) (+ x (+ y z . w)))
((* x y z . w) (* x (* y z . w)))
((- x y) (+ x (* -1 y)))
((/ x y) (* x (/ y)))
((^ x y) (expt x y))
((expt x y) (exp (* y (log x))))
((log a b) (/ (log a) (log b)))
((sqrt x) (^ x (/ 1 2)))
((tan x) (/ (sin x) (cos x)))))
(defparameter *simplification-rules*
'(((+ 0 x) x) ((+ x 0) x)
((* x 1) x) ((* 1 x) x)
((* 1 x . w) (* x . w))
((* x 0) 0) ((* 0 x) 0)
((* (/ x) x . w) (* 1 . w))
((* x (* y z . w)) (* x y z . w))
((exp (* a (log b))) (expt b a))))
(defun doit (expr)
(transform (transform (transform expr *input-rules*)
*diff-rules*) *simplification-rules*))
(print (doit '(+ 0 x)))