.simplednn.0.5.3.source-code.ProgressiveSumTest.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of simplednn Show documentation
Show all versions of simplednn Show documentation
SimpleDNN is a machine learning lightweight open-source library written in Kotlin whose purpose is to
support the development of feed-forward and recurrent Artificial Neural Networks.
/* Copyright 2016-present The KotlinNLP Authors. All Rights Reserved.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at http://mozilla.org/MPL/2.0/.
* ------------------------------------------------------------------*/
import com.kotlinnlp.simplednn.core.functionalities.activations.Softmax
import com.kotlinnlp.simplednn.core.functionalities.updatemethods.learningrate.LearningRateMethod
import com.kotlinnlp.simplednn.core.functionalities.activations.Tanh
import com.kotlinnlp.simplednn.core.functionalities.losses.SoftmaxCrossEntropyCalculator
import com.kotlinnlp.simplednn.helpers.training.SequenceTrainingHelper
import com.kotlinnlp.simplednn.core.neuralprocessor.recurrent.RecurrentNeuralProcessor
import com.kotlinnlp.simplednn.dataset.*
import com.kotlinnlp.simplednn.core.functionalities.outputevaluation.ClassificationEvaluation
import com.kotlinnlp.simplednn.core.neuralnetwork.preset.CFN
import com.kotlinnlp.simplednn.core.optimizer.ParamsOptimizer
import com.kotlinnlp.simplednn.helpers.validation.SequenceValidationHelper
import com.kotlinnlp.simplednn.simplemath.ndarray.dense.DenseNDArray
import utils.CorpusReader
import utils.exampleextractor.ClassificationSequenceExampleExtractor
fun main(args: Array) {
println("Start 'Progressive Sum Test'")
val dataset = CorpusReader>().read(
corpusPath = Configuration.loadFromFile().progressive_sum.datasets_paths, // same for validation and test
exampleExtractor = ClassificationSequenceExampleExtractor(outputSize = 11),
perLine = true)
ProgressiveSumTest(dataset).start()
println("End.")
}
/**
*
*/
class ProgressiveSumTest(val dataset: Corpus>) {
/**
*
*/
private val neuralNetwork = CFN(
inputSize = 1,
hiddenSize = 100,
hiddenActivation = Tanh(),
outputSize = 11,
outputActivation = Softmax())
/**
*
*/
fun start() {
this.initialValidation()
this.train()
}
/**
*
*/
private fun initialValidation() {
println("\n-- VALIDATION BEFORE TRAINING\n")
val validationHelper = SequenceValidationHelper(
neuralProcessor = RecurrentNeuralProcessor(this.neuralNetwork),
outputEvaluationFunction = ClassificationEvaluation())
val accuracy: Double = validationHelper.validate(this.dataset.validation)
println("Accuracy: %.2f%%".format(100.0 * accuracy))
}
/**
*
*/
private fun train() {
println("\n-- TRAINING\n")
val optimizer = ParamsOptimizer(
params = this.neuralNetwork.model,
updateMethod = LearningRateMethod(learningRate = 0.1))
val trainingHelper = SequenceTrainingHelper(
neuralProcessor = RecurrentNeuralProcessor(this.neuralNetwork),
optimizer = optimizer,
lossCalculator = SoftmaxCrossEntropyCalculator(),
verbose = true)
val validationHelper = SequenceValidationHelper(
neuralProcessor = RecurrentNeuralProcessor(this.neuralNetwork),
outputEvaluationFunction = ClassificationEvaluation())
trainingHelper.train(
trainingExamples = this.dataset.training,
validationExamples = this.dataset.validation,
epochs = 4,
shuffler = Shuffler(enablePseudoRandom = true, seed = 1),
batchSize = 1,
validationHelper = validationHelper)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy