.simplednn.0.5.4.source-code.SparseInputTest.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of simplednn Show documentation
Show all versions of simplednn Show documentation
SimpleDNN is a machine learning lightweight open-source library written in Kotlin whose purpose is to
support the development of feed-forward and recurrent Artificial Neural Networks.
/* Copyright 2016-present The KotlinNLP Authors. All Rights Reserved.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at http://mozilla.org/MPL/2.0/.
* ------------------------------------------------------------------*/
import com.kotlinnlp.simplednn.core.functionalities.activations.Softmax
import com.kotlinnlp.simplednn.core.functionalities.activations.Softsign
import com.kotlinnlp.simplednn.core.functionalities.losses.SoftmaxCrossEntropyCalculator
import com.kotlinnlp.simplednn.core.functionalities.outputevaluation.ClassificationEvaluation
import com.kotlinnlp.simplednn.core.functionalities.updatemethods.adagrad.AdaGradMethod
import com.kotlinnlp.simplednn.core.layers.LayerType
import com.kotlinnlp.simplednn.core.neuralnetwork.preset.FeedforwardNeuralNetwork
import com.kotlinnlp.simplednn.core.neuralprocessor.feedforward.FeedforwardNeuralProcessor
import com.kotlinnlp.simplednn.core.optimizer.ParamsOptimizer
import com.kotlinnlp.simplednn.dataset.Corpus
import com.kotlinnlp.simplednn.dataset.Shuffler
import com.kotlinnlp.simplednn.dataset.SimpleExample
import com.kotlinnlp.simplednn.helpers.training.FeedforwardTrainingHelper
import com.kotlinnlp.simplednn.helpers.validation.FeedforwardValidationHelper
import com.kotlinnlp.simplednn.simplemath.ndarray.sparsebinary.SparseBinaryNDArray
import utils.CorpusReader
import utils.exampleextractor.ClassificationSparseExampleExtractor
fun main(args: Array) {
println("Start 'Sparse Input Test'")
val dataset = CorpusReader>().read(
corpusPath = Configuration.loadFromFile().sparse_input.datasets_paths,
exampleExtractor = ClassificationSparseExampleExtractor(inputSize = 356425, outputSize = 86),
perLine = true)
SparseInputTest(dataset).start()
println("End.")
}
/**
*
*/
class SparseInputTest(val dataset: Corpus>) {
/**
*
*/
private val neuralNetwork = FeedforwardNeuralNetwork(
inputSize = 356425,
inputType = LayerType.Input.SparseBinary,
hiddenSize = 200,
hiddenActivation = Softsign(),
outputSize = 86,
outputActivation = Softmax())
/**
*
*/
fun start() {
this.train()
}
/**
*
*/
private fun train() {
println("\n-- TRAINING")
val optimizer = ParamsOptimizer(
params = this.neuralNetwork.model,
updateMethod = AdaGradMethod(learningRate = 0.1)
)
val trainingHelper = FeedforwardTrainingHelper(
neuralProcessor = FeedforwardNeuralProcessor(this.neuralNetwork),
optimizer = optimizer,
lossCalculator = SoftmaxCrossEntropyCalculator(),
verbose = true)
val validationHelper = FeedforwardValidationHelper(
neuralProcessor = FeedforwardNeuralProcessor(this.neuralNetwork),
outputEvaluationFunction = ClassificationEvaluation())
trainingHelper.train(
trainingExamples = this.dataset.training,
validationExamples = this.dataset.validation,
epochs = 3,
batchSize = 1,
shuffler = Shuffler(enablePseudoRandom = true, seed = 1),
validationHelper = validationHelper)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy