.rethink-java-driver.0.3.source-code.q2l.proto Maven / Gradle / Ivy
The newest version!
option java_package = "com.rethinkdb.proto";
////////////////////////////////////////////////////////////////////////////////
// THE HIGH-LEVEL VIEW //
////////////////////////////////////////////////////////////////////////////////
// Process: When you first open a connection, send the magic number
// for the version of the protobuf you're targeting (in the [Version]
// enum). This should **NOT** be sent as a protobuf; just send the
// little-endian 32-bit integer over the wire raw. This number should
// only be sent once per connection.
// The magic number shall be followed by an authorization key. The
// first 4 bytes are the length of the key to be sent as a little-endian
// 32-bit integer, followed by the key string. Even if there is no key,
// an empty string should be sent (length 0 and no data).
// Following the authorization key, the client shall send a magic number
// for the communication protocol they want to use (in the [Protocol]
// enum). This shall be a little-endian 32-bit integer.
// The server will then respond with a NULL-terminated string response.
// "SUCCESS" indicates that the connection has been accepted. Any other
// response indicates an error, and the response string should describe
// the error.
// Next, for each query you want to send, construct a [Query] protobuf
// and serialize it to a binary blob. Send the blob's size to the
// server encoded as a little-endian 32-bit integer, followed by the
// blob itself. You will recieve a [Response] protobuf back preceded
// by its own size, once again encoded as a little-endian 32-bit
// integer. You can see an example exchange below in **EXAMPLE**.
// A query consists of a [Term] to evaluate and a unique-per-connection
// [token].
// Tokens are used for two things:
// * Keeping track of which responses correspond to which queries.
// * Batched queries. Some queries return lots of results, so we send back
// batches of <1000, and you need to send a [CONTINUE] query with the same
// token to get more results from the original query.
////////////////////////////////////////////////////////////////////////////////
message VersionDummy { // We need to wrap it like this for some
// non-conforming protobuf libraries
// This enum contains the magic numbers for your version. See **THE HIGH-LEVEL
// VIEW** for what to do with it.
enum Version {
V0_1 = 0x3f61ba36;
V0_2 = 0x723081e1; // Authorization key during handshake
V0_3 = 0x5f75e83e; // Authorization key and protocol during handshake
}
// The protocol to use after the handshake, specified in V0_3
enum Protocol {
PROTOBUF = 0x271ffc41;
JSON = 0x7e6970c7;
}
}
// You send one of:
// * A [START] query with a [Term] to evaluate and a unique-per-connection token.
// * A [CONTINUE] query with the same token as a [START] query that returned
// [SUCCESS_PARTIAL] in its [Response].
// * A [STOP] query with the same token as a [START] query that you want to stop.
// * A [NOREPLY_WAIT] query with a unique per-connection token. The server answers
// with a [WAIT_COMPLETE] [Response].
message Query {
enum QueryType {
START = 1; // Start a new query.
CONTINUE = 2; // Continue a query that returned [SUCCESS_PARTIAL]
// (see [Response]).
STOP = 3; // Stop a query partway through executing.
NOREPLY_WAIT = 4;
// Wait for noreply operations to finish.
}
optional QueryType type = 1;
// A [Term] is how we represent the operations we want a query to perform.
optional Term query = 2; // only present when [type] = [START]
optional int64 token = 3;
// This flag is ignored on the server. `noreply` should be added
// to `global_optargs` instead (the key "noreply" should map to
// either true or false).
optional bool OBSOLETE_noreply = 4 [default = false];
// If this is set to [true], then [Datum] values will sometimes be
// of [DatumType] [R_JSON] (see below). This can provide enormous
// speedups in languages with poor protobuf libraries.
optional bool accepts_r_json = 5 [default = false];
message AssocPair {
optional string key = 1;
optional Term val = 2;
}
repeated AssocPair global_optargs = 6;
}
// A backtrace frame (see `backtrace` in Response below)
message Frame {
enum FrameType {
POS = 1; // Error occured in a positional argument.
OPT = 2; // Error occured in an optional argument.
}
optional FrameType type = 1;
optional int64 pos = 2; // The index of the positional argument.
optional string opt = 3; // The name of the optional argument.
}
message Backtrace {
repeated Frame frames = 1;
}
// You get back a response with the same [token] as your query.
message Response {
enum ResponseType {
// These response types indicate success.
SUCCESS_ATOM = 1; // Query returned a single RQL datatype.
SUCCESS_SEQUENCE = 2; // Query returned a sequence of RQL datatypes.
SUCCESS_PARTIAL = 3; // Query returned a partial sequence of RQL
// datatypes. If you send a [CONTINUE] query with
// the same token as this response, you will get
// more of the sequence. Keep sending [CONTINUE]
// queries until you get back [SUCCESS_SEQUENCE].
WAIT_COMPLETE = 4; // A [NOREPLY_WAIT] query completed.
// These response types indicate failure.
CLIENT_ERROR = 16; // Means the client is buggy. An example is if the
// client sends a malformed protobuf, or tries to
// send [CONTINUE] for an unknown token.
COMPILE_ERROR = 17; // Means the query failed during parsing or type
// checking. For example, if you pass too many
// arguments to a function.
RUNTIME_ERROR = 18; // Means the query failed at runtime. An example is
// if you add together two values from a table, but
// they turn out at runtime to be booleans rather
// than numbers.
}
optional ResponseType type = 1;
optional int64 token = 2; // Indicates what [Query] this response corresponds to.
// [response] contains 1 RQL datum if [type] is [SUCCESS_ATOM], or many RQL
// data if [type] is [SUCCESS_SEQUENCE] or [SUCCESS_PARTIAL]. It contains 1
// error message (of type [R_STR]) in all other cases.
repeated Datum response = 3;
// If [type] is [CLIENT_ERROR], [TYPE_ERROR], or [RUNTIME_ERROR], then a
// backtrace will be provided. The backtrace says where in the query the
// error occured. Ideally this information will be presented to the user as
// a pretty-printed version of their query with the erroneous section
// underlined. A backtrace is a series of 0 or more [Frame]s, each of which
// specifies either the index of a positional argument or the name of an
// optional argument. (Those words will make more sense if you look at the
// [Term] message below.)
optional Backtrace backtrace = 4; // Contains n [Frame]s when you get back an error.
// If the [global_optargs] in the [Query] that this [Response] is a
// response to contains a key "profile" which maps to a static value of
// true then [profile] will contain a [Datum] which provides profiling
// information about the execution of the query. This field should be
// returned to the user along with the result that would normally be
// returned (a datum or a cursor). In official drivers this is accomplished
// by putting them inside of an object with "value" mapping to the return
// value and "profile" mapping to the profile object.
optional Datum profile = 5;
}
// A [Datum] is a chunk of data that can be serialized to disk or returned to
// the user in a Response. Currently we only support JSON types, but we may
// support other types in the future (e.g., a date type or an integer type).
message Datum {
enum DatumType {
R_NULL = 1;
R_BOOL = 2;
R_NUM = 3; // a double
R_STR = 4;
R_ARRAY = 5;
R_OBJECT = 6;
// This [DatumType] will only be used if [accepts_r_json] is
// set to [true] in [Query]. [r_str] will be filled with a
// JSON encoding of the [Datum].
R_JSON = 7; // uses r_str
}
optional DatumType type = 1;
optional bool r_bool = 2;
optional double r_num = 3;
optional string r_str = 4;
repeated Datum r_array = 5;
message AssocPair {
optional string key = 1;
optional Datum val = 2;
}
repeated AssocPair r_object = 6;
extensions 10000 to 20000;
}
// A [Term] is either a piece of data (see **Datum** above), or an operator and
// its operands. If you have a [Datum], it's stored in the member [datum]. If
// you have an operator, its positional arguments are stored in [args] and its
// optional arguments are stored in [optargs].
//
// A note about type signatures:
// We use the following notation to denote types:
// arg1_type, arg2_type, argrest_type... -> result_type
// So, for example, if we have a function `avg` that takes any number of
// arguments and averages them, we might write:
// NUMBER... -> NUMBER
// Or if we had a function that took one number modulo another:
// NUMBER, NUMBER -> NUMBER
// Or a function that takes a table and a primary key of any Datum type, then
// retrieves the entry with that primary key:
// Table, DATUM -> OBJECT
// Some arguments must be provided as literal values (and not the results of sub
// terms). These are marked with a `!`.
// Optional arguments are specified within curly braces as argname `:` value
// type (e.x `{use_outdated:BOOL}`)
// Many RQL operations are polymorphic. For these, alterantive type signatures
// are separated by `|`.
//
// The RQL type hierarchy is as follows:
// Top
// DATUM
// NULL
// BOOL
// NUMBER
// STRING
// OBJECT
// SingleSelection
// ARRAY
// Sequence
// ARRAY
// Stream
// StreamSelection
// Table
// Database
// Function
// Ordering - used only by ORDER_BY
// Pathspec -- an object, string, or array that specifies a path
// Error
message Term {
enum TermType {
// A RQL datum, stored in `datum` below.
DATUM = 1;
MAKE_ARRAY = 2; // DATUM... -> ARRAY
// Evaluate the terms in [optargs] and make an object
MAKE_OBJ = 3; // {...} -> OBJECT
// * Compound types
// Takes an integer representing a variable and returns the value stored
// in that variable. It's the responsibility of the client to translate
// from their local representation of a variable to a unique _non-negative_
// integer for that variable. (We do it this way instead of letting
// clients provide variable names as strings to discourage
// variable-capturing client libraries, and because it's more efficient
// on the wire.)
VAR = 10; // !NUMBER -> DATUM
// Takes some javascript code and executes it.
JAVASCRIPT = 11; // STRING {timeout: !NUMBER} -> DATUM |
// STRING {timeout: !NUMBER} -> Function(*)
// Takes a string and throws an error with that message.
// Inside of a `default` block, you can omit the first
// argument to rethrow whatever error you catch (this is most
// useful as an argument to the `default` filter optarg).
ERROR = 12; // STRING -> Error | -> Error
// Takes nothing and returns a reference to the implicit variable.
IMPLICIT_VAR = 13; // -> DATUM
// Takes a range of numbers and returns a random number within the range
RANDOM = 151; // NUMBER, NUMBER {float:BOOL} -> DATUM
// * Data Operators
// Returns a reference to a database.
DB = 14; // STRING -> Database
// Returns a reference to a table.
TABLE = 15; // Database, STRING, {use_outdated:BOOL} -> Table | STRING, {use_outdated:BOOL} -> Table
// Gets a single element from a table by its primary or a secondary key.
GET = 16; // Table, STRING -> SingleSelection | Table, NUMBER -> SingleSelection |
// Table, STRING -> NULL | Table, NUMBER -> NULL |
GET_ALL = 78; // Table, DATUM..., {index:!STRING} => ARRAY
// Simple DATUM Ops
EQ = 17; // DATUM... -> BOOL
NE = 18; // DATUM... -> BOOL
LT = 19; // DATUM... -> BOOL
LE = 20; // DATUM... -> BOOL
GT = 21; // DATUM... -> BOOL
GE = 22; // DATUM... -> BOOL
NOT = 23; // BOOL -> BOOL
// ADD can either add two numbers or concatenate two arrays.
ADD = 24; // NUMBER... -> NUMBER | STRING... -> STRING
SUB = 25; // NUMBER... -> NUMBER
MUL = 26; // NUMBER... -> NUMBER
DIV = 27; // NUMBER... -> NUMBER
MOD = 28; // NUMBER, NUMBER -> NUMBER
// DATUM Array Ops
// Append a single element to the end of an array (like `snoc`).
APPEND = 29; // ARRAY, DATUM -> ARRAY
// Prepend a single element to the end of an array (like `cons`).
PREPEND = 80; // ARRAY, DATUM -> ARRAY
//Remove the elements of one array from another array.
DIFFERENCE = 95; // ARRAY, ARRAY -> ARRAY
// DATUM Set Ops
// Set ops work on arrays. They don't use actual sets and thus have
// performance characteristics you would expect from arrays rather than
// from sets. All set operations have the post condition that they
// array they return contains no duplicate values.
SET_INSERT = 88; // ARRAY, DATUM -> ARRAY
SET_INTERSECTION = 89; // ARRAY, ARRAY -> ARRAY
SET_UNION = 90; // ARRAY, ARRAY -> ARRAY
SET_DIFFERENCE = 91; // ARRAY, ARRAY -> ARRAY
SLICE = 30; // Sequence, NUMBER, NUMBER -> Sequence
SKIP = 70; // Sequence, NUMBER -> Sequence
LIMIT = 71; // Sequence, NUMBER -> Sequence
INDEXES_OF = 87; // Sequence, DATUM -> Sequence | Sequence, Function(1) -> Sequence
CONTAINS = 93; // Sequence, DATUM -> BOOL | Sequence, Function(1) -> BOOL
// Stream/Object Ops
// Get a particular field from an object, or map that over a
// sequence.
GET_FIELD = 31; // OBJECT, STRING -> DATUM
// | Sequence, STRING -> Sequence
// Return an array containing the keys of the object.
KEYS = 94; // OBJECT -> ARRAY
// Creates an object
OBJECT = 143; // STRING, DATUM, ... -> OBJECT
// Check whether an object contains all the specified fields,
// or filters a sequence so that all objects inside of it
// contain all the specified fields.
HAS_FIELDS = 32; // OBJECT, Pathspec... -> BOOL
// x.with_fields(...) <=> x.has_fields(...).pluck(...)
WITH_FIELDS = 96; // Sequence, Pathspec... -> Sequence
// Get a subset of an object by selecting some attributes to preserve,
// or map that over a sequence. (Both pick and pluck, polymorphic.)
PLUCK = 33; // Sequence, Pathspec... -> Sequence | OBJECT, Pathspec... -> OBJECT
// Get a subset of an object by selecting some attributes to discard, or
// map that over a sequence. (Both unpick and without, polymorphic.)
WITHOUT = 34; // Sequence, Pathspec... -> Sequence | OBJECT, Pathspec... -> OBJECT
// Merge objects (right-preferential)
MERGE = 35; // OBJECT... -> OBJECT | Sequence -> Sequence
// Sequence Ops
// Get all elements of a sequence between two values.
// Half-open by default, but the openness of either side can be
// changed by passing 'closed' or 'open for `right_bound` or
// `left_bound`.
BETWEEN = 36; // StreamSelection, DATUM, DATUM, {index:!STRING, right_bound:STRING, left_bound:STRING} -> StreamSelection
REDUCE = 37; // Sequence, Function(2) -> DATUM
MAP = 38; // Sequence, Function(1) -> Sequence
// Filter a sequence with either a function or a shortcut
// object (see API docs for details). The body of FILTER is
// wrapped in an implicit `.default(false)`, and you can
// change the default value by specifying the `default`
// optarg. If you make the default `r.error`, all errors
// caught by `default` will be rethrown as if the `default`
// did not exist.
FILTER = 39; // Sequence, Function(1), {default:DATUM} -> Sequence |
// Sequence, OBJECT, {default:DATUM} -> Sequence
// Map a function over a sequence and then concatenate the results together.
CONCATMAP = 40; // Sequence, Function(1) -> Sequence
// Order a sequence based on one or more attributes.
ORDERBY = 41; // Sequence, (!STRING | Ordering)... -> Sequence
// Get all distinct elements of a sequence (like `uniq`).
DISTINCT = 42; // Sequence -> Sequence
// Count the number of elements in a sequence, or only the elements that match
// a given filter.
COUNT = 43; // Sequence -> NUMBER | Sequence, DATUM -> NUMBER | Sequence, Function(1) -> NUMBER
IS_EMPTY = 86; // Sequence -> BOOL
// Take the union of multiple sequences (preserves duplicate elements! (use distinct)).
UNION = 44; // Sequence... -> Sequence
// Get the Nth element of a sequence.
NTH = 45; // Sequence, NUMBER -> DATUM
INNER_JOIN = 48; // Sequence, Sequence, Function(2) -> Sequence
OUTER_JOIN = 49; // Sequence, Sequence, Function(2) -> Sequence
// An inner-join that does an equality comparison on two attributes.
EQ_JOIN = 50; // Sequence, !STRING, Sequence, {index:!STRING} -> Sequence
ZIP = 72; // Sequence -> Sequence
// Array Ops
// Insert an element in to an array at a given index.
INSERT_AT = 82; // ARRAY, NUMBER, DATUM -> ARRAY
// Remove an element at a given index from an array.
DELETE_AT = 83; // ARRAY, NUMBER -> ARRAY |
// ARRAY, NUMBER, NUMBER -> ARRAY
// Change the element at a given index of an array.
CHANGE_AT = 84; // ARRAY, NUMBER, DATUM -> ARRAY
// Splice one array in to another array.
SPLICE_AT = 85; // ARRAY, NUMBER, ARRAY -> ARRAY
// * Type Ops
// Coerces a datum to a named type (e.g. "bool").
// If you previously used `stream_to_array`, you should use this instead
// with the type "array".
COERCE_TO = 51; // Top, STRING -> Top
// Returns the named type of a datum (e.g. TYPEOF(true) = "BOOL")
TYPEOF = 52; // Top -> STRING
// * Write Ops (the OBJECTs contain data about number of errors etc.)
// Updates all the rows in a selection. Calls its Function with the row
// to be updated, and then merges the result of that call.
UPDATE = 53; // StreamSelection, Function(1), {non_atomic:BOOL, durability:STRING, return_vals:BOOL} -> OBJECT |
// SingleSelection, Function(1), {non_atomic:BOOL, durability:STRING, return_vals:BOOL} -> OBJECT |
// StreamSelection, OBJECT, {non_atomic:BOOL, durability:STRING, return_vals:BOOL} -> OBJECT |
// SingleSelection, OBJECT, {non_atomic:BOOL, durability:STRING, return_vals:BOOL} -> OBJECT
// Deletes all the rows in a selection.
DELETE = 54; // StreamSelection, {durability:STRING, return_vals:BOOL} -> OBJECT | SingleSelection -> OBJECT
// Replaces all the rows in a selection. Calls its Function with the row
// to be replaced, and then discards it and stores the result of that
// call.
REPLACE = 55; // StreamSelection, Function(1), {non_atomic:BOOL, durability:STRING, return_vals:BOOL} -> OBJECT | SingleSelection, Function(1), {non_atomic:BOOL, durability:STRING, return_vals:BOOL} -> OBJECT
// Inserts into a table. If `upsert` is true, overwrites entries with
// the same primary key (otherwise errors).
INSERT = 56; // Table, OBJECT, {upsert:BOOL, durability:STRING, return_vals:BOOL} -> OBJECT | Table, Sequence, {upsert:BOOL, durability:STRING, return_vals:BOOL} -> OBJECT
// * Administrative OPs
// Creates a database with a particular name.
DB_CREATE = 57; // STRING -> OBJECT
// Drops a database with a particular name.
DB_DROP = 58; // STRING -> OBJECT
// Lists all the databases by name. (Takes no arguments)
DB_LIST = 59; // -> ARRAY
// Creates a table with a particular name in a particular
// database. (You may omit the first argument to use the
// default database.)
TABLE_CREATE = 60; // Database, STRING, {datacenter:STRING, primary_key:STRING, durability:STRING} -> OBJECT
// STRING, {datacenter:STRING, primary_key:STRING, durability:STRING} -> OBJECT
// Drops a table with a particular name from a particular
// database. (You may omit the first argument to use the
// default database.)
TABLE_DROP = 61; // Database, STRING -> OBJECT
// STRING -> OBJECT
// Lists all the tables in a particular database. (You may
// omit the first argument to use the default database.)
TABLE_LIST = 62; // Database -> ARRAY
// -> ARRAY
// Ensures that previously issued soft-durability writes are complete and
// written to disk.
SYNC = 138; // Table -> OBJECT
// * Secondary indexes OPs
// Creates a new secondary index with a particular name and definition.
INDEX_CREATE = 75; // Table, STRING, Function(1), {multi:BOOL} -> OBJECT
// Drops a secondary index with a particular name from the specified table.
INDEX_DROP = 76; // Table, STRING -> OBJECT
// Lists all secondary indexes on a particular table.
INDEX_LIST = 77; // Table -> ARRAY
// Gets information about whether or not a set of indexes are ready to
// be accessed. Returns a list of objects that look like this:
// {index:STRING, ready:BOOL[, blocks_processed:NUMBER, blocks_total:NUMBER]}
INDEX_STATUS = 139; // Table, STRING... -> ARRAY
// Blocks until a set of indexes are ready to be accessed. Returns the
// same values INDEX_STATUS.
INDEX_WAIT = 140; // Table, STRING... -> ARRAY
// * Control Operators
// Calls a function on data
FUNCALL = 64; // Function(*), DATUM... -> DATUM
// Executes its first argument, and returns its second argument if it
// got [true] or its third argument if it got [false] (like an `if`
// statement).
BRANCH = 65; // BOOL, Top, Top -> Top
// Returns true if any of its arguments returns true (short-circuits).
// (Like `or` in most languages.)
ANY = 66; // BOOL... -> BOOL
// Returns true if all of its arguments return true (short-circuits).
// (Like `and` in most languages.)
ALL = 67; // BOOL... -> BOOL
// Calls its Function with each entry in the sequence
// and executes the array of terms that Function returns.
FOREACH = 68; // Sequence, Function(1) -> OBJECT
////////////////////////////////////////////////////////////////////////////////
////////// Special Terms
////////////////////////////////////////////////////////////////////////////////
// An anonymous function. Takes an array of numbers representing
// variables (see [VAR] above), and a [Term] to execute with those in
// scope. Returns a function that may be passed an array of arguments,
// then executes the Term with those bound to the variable names. The
// user will never construct this directly. We use it internally for
// things like `map` which take a function. The "arity" of a [Function] is
// the number of arguments it takes.
// For example, here's what `_X_.map{|x| x+2}` turns into:
// Term {
// type = MAP;
// args = [_X_,
// Term {
// type = Function;
// args = [Term {
// type = DATUM;
// datum = Datum {
// type = R_ARRAY;
// r_array = [Datum { type = R_NUM; r_num = 1; }];
// };
// },
// Term {
// type = ADD;
// args = [Term {
// type = VAR;
// args = [Term {
// type = DATUM;
// datum = Datum { type = R_NUM;
// r_num = 1};
// }];
// },
// Term {
// type = DATUM;
// datum = Datum { type = R_NUM; r_num = 2; };
// }];
// }];
// }];
FUNC = 69; // ARRAY, Top -> ARRAY -> Top
// Indicates to ORDER_BY that this attribute is to be sorted in ascending order.
ASC = 73; // !STRING -> Ordering
// Indicates to ORDER_BY that this attribute is to be sorted in descending order.
DESC = 74; // !STRING -> Ordering
// Gets info about anything. INFO is most commonly called on tables.
INFO = 79; // Top -> OBJECT
// `a.match(b)` returns a match object if the string `a`
// matches the regular expression `b`.
MATCH = 97; // STRING, STRING -> DATUM
// Change the case of a string.
UPCASE = 141; // STRING -> STRING
DOWNCASE = 142; // STRING -> STRING
// Select a number of elements from sequence with uniform distribution.
SAMPLE = 81; // Sequence, NUMBER -> Sequence
// Evaluates its first argument. If that argument returns
// NULL or throws an error related to the absence of an
// expected value (for instance, accessing a non-existent
// field or adding NULL to an integer), DEFAULT will either
// return its second argument or execute it if it's a
// function. If the second argument is a function, it will be
// passed either the text of the error or NULL as its
// argument.
DEFAULT = 92; // Top, Top -> Top
// Parses its first argument as a json string and returns it as a
// datum.
JSON = 98; // STRING -> DATUM
// Parses its first arguments as an ISO 8601 time and returns it as a
// datum.
ISO8601 = 99; // STRING -> PSEUDOTYPE(TIME)
// Prints a time as an ISO 8601 time.
TO_ISO8601 = 100; // PSEUDOTYPE(TIME) -> STRING
// Returns a time given seconds since epoch in UTC.
EPOCH_TIME = 101; // NUMBER -> PSEUDOTYPE(TIME)
// Returns seconds since epoch in UTC given a time.
TO_EPOCH_TIME = 102; // PSEUDOTYPE(TIME) -> NUMBER
// The time the query was received by the server.
NOW = 103; // -> PSEUDOTYPE(TIME)
// Puts a time into an ISO 8601 timezone.
IN_TIMEZONE = 104; // PSEUDOTYPE(TIME), STRING -> PSEUDOTYPE(TIME)
// a.during(b, c) returns whether a is in the range [b, c)
DURING = 105; // PSEUDOTYPE(TIME), PSEUDOTYPE(TIME), PSEUDOTYPE(TIME) -> BOOL
// Retrieves the date portion of a time.
DATE = 106; // PSEUDOTYPE(TIME) -> PSEUDOTYPE(TIME)
// x.time_of_day == x.date - x
TIME_OF_DAY = 126; // PSEUDOTYPE(TIME) -> NUMBER
// Returns the timezone of a time.
TIMEZONE = 127; // PSEUDOTYPE(TIME) -> STRING
// These access the various components of a time.
YEAR = 128; // PSEUDOTYPE(TIME) -> NUMBER
MONTH = 129; // PSEUDOTYPE(TIME) -> NUMBER
DAY = 130; // PSEUDOTYPE(TIME) -> NUMBER
DAY_OF_WEEK = 131; // PSEUDOTYPE(TIME) -> NUMBER
DAY_OF_YEAR = 132; // PSEUDOTYPE(TIME) -> NUMBER
HOURS = 133; // PSEUDOTYPE(TIME) -> NUMBER
MINUTES = 134; // PSEUDOTYPE(TIME) -> NUMBER
SECONDS = 135; // PSEUDOTYPE(TIME) -> NUMBER
// Construct a time from a date and optional timezone or a
// date+time and optional timezone.
TIME = 136; // NUMBER, NUMBER, NUMBER -> PSEUDOTYPE(TIME) |
// NUMBER, NUMBER, NUMBER, STRING -> PSEUDOTYPE(TIME) |
// NUMBER, NUMBER, NUMBER, NUMBER, NUMBER, NUMBER -> PSEUDOTYPE(TIME) |
// NUMBER, NUMBER, NUMBER, NUMBER, NUMBER, NUMBER, STRING -> PSEUDOTYPE(TIME) |
// Constants for ISO 8601 days of the week.
MONDAY = 107; // -> 1
TUESDAY = 108; // -> 2
WEDNESDAY = 109; // -> 3
THURSDAY = 110; // -> 4
FRIDAY = 111; // -> 5
SATURDAY = 112; // -> 6
SUNDAY = 113; // -> 7
// Constants for ISO 8601 months.
JANUARY = 114; // -> 1
FEBRUARY = 115; // -> 2
MARCH = 116; // -> 3
APRIL = 117; // -> 4
MAY = 118; // -> 5
JUNE = 119; // -> 6
JULY = 120; // -> 7
AUGUST = 121; // -> 8
SEPTEMBER = 122; // -> 9
OCTOBER = 123; // -> 10
NOVEMBER = 124; // -> 11
DECEMBER = 125; // -> 12
// Indicates to MERGE to replace the other object rather than merge it.
LITERAL = 137; // JSON -> Merging
// SEQUENCE, STRING -> GROUPED_SEQUENCE | SEQUENCE, FUNCTION -> GROUPED_SEQUENCE
GROUP = 144;
SUM = 145;
AVG = 146;
MIN = 147;
MAX = 148;
// `str.split()` splits on whitespace
// `str.split(" ")` splits on spaces only
// `str.split(" ", 5)` splits on spaces with at most 5 results
// `str.split(nil, 5)` splits on whitespace with at most 5 results
SPLIT = 149; // STRING -> ARRAY | STRING, STRING -> ARRAY | STRING, STRING, NUMBER -> ARRAY | STRING, NULL, NUMBER -> ARRAY
UNGROUP = 150; // GROUPED_DATA -> ARRAY
}
optional TermType type = 1;
// This is only used when type is DATUM.
optional Datum datum = 2;
repeated Term args = 3; // Holds the positional arguments of the query.
message AssocPair {
optional string key = 1;
optional Term val = 2;
}
repeated AssocPair optargs = 4; // Holds the optional arguments of the query.
// (Note that the order of the optional arguments doesn't matter; think of a
// Hash.)
extensions 10000 to 20000;
}
////////////////////////////////////////////////////////////////////////////////
// EXAMPLE //
////////////////////////////////////////////////////////////////////////////////
// ```ruby
// r.table('tbl', {:use_outdated => true}).insert([{:id => 0}, {:id => 1}])
// ```
// Would turn into:
// Term {
// type = INSERT;
// args = [Term {
// type = TABLE;
// args = [Term {
// type = DATUM;
// datum = Datum { type = R_STR; r_str = "tbl"; };
// }];
// optargs = [["use_outdated",
// Term {
// type = DATUM;
// datum = Datum { type = R_BOOL; r_bool = true; };
// }]];
// },
// Term {
// type = MAKE_ARRAY;
// args = [Term {
// type = DATUM;
// datum = Datum { type = R_OBJECT; r_object = [["id", 0]]; };
// },
// Term {
// type = DATUM;
// datum = Datum { type = R_OBJECT; r_object = [["id", 1]]; };
// }];
// }]
// }
// And the server would reply:
// Response {
// type = SUCCESS_ATOM;
// token = 1;
// response = [Datum { type = R_OBJECT; r_object = [["inserted", 2]]; }];
// }
// Or, if there were an error:
// Response {
// type = RUNTIME_ERROR;
// token = 1;
// response = [Datum { type = R_STR; r_str = "The table `tbl` doesn't exist!"; }];
// backtrace = [Frame { type = POS; pos = 0; }, Frame { type = POS; pos = 0; }];
// }