
assets.lib.dygraphs.datahandler.bars-error.js Maven / Gradle / Ivy
/**
* @license
* Copyright 2013 David Eberlein ([email protected])
* MIT-licensed (http://opensource.org/licenses/MIT)
*/
/**
* @fileoverview DataHandler implementation for the error bars option.
* @author David Eberlein ([email protected])
*/
(function() {
/*global Dygraph:false */
"use strict";
/**
* @constructor
* @extends Dygraph.DataHandlers.BarsHandler
*/
Dygraph.DataHandlers.ErrorBarsHandler = function() {
};
var ErrorBarsHandler = Dygraph.DataHandlers.ErrorBarsHandler;
ErrorBarsHandler.prototype = new Dygraph.DataHandlers.BarsHandler();
/** @inheritDoc */
ErrorBarsHandler.prototype.extractSeries = function(rawData, i, options) {
// TODO(danvk): pre-allocate series here.
var series = [];
var x, y, variance, point;
var sigma = options.get("sigma");
var logScale = options.get('logscale');
for ( var j = 0; j < rawData.length; j++) {
x = rawData[j][0];
point = rawData[j][i];
if (logScale && point !== null) {
// On the log scale, points less than zero do not exist.
// This will create a gap in the chart.
if (point[0] <= 0 || point[0] - sigma * point[1] <= 0) {
point = null;
}
}
// Extract to the unified data format.
if (point !== null) {
y = point[0];
if (y !== null && !isNaN(y)) {
variance = sigma * point[1];
// preserve original error value in extras for further
// filtering
series.push([ x, y, [ y - variance, y + variance, point[1] ] ]);
} else {
series.push([ x, y, [ y, y, y ] ]);
}
} else {
series.push([ x, null, [ null, null, null ] ]);
}
}
return series;
};
/** @inheritDoc */
ErrorBarsHandler.prototype.rollingAverage =
function(originalData, rollPeriod, options) {
rollPeriod = Math.min(rollPeriod, originalData.length);
var rollingData = [];
var sigma = options.get("sigma");
var i, j, y, v, sum, num_ok, stddev, variance, value;
// Calculate the rolling average for the first rollPeriod - 1 points
// where there is not enough data to roll over the full number of points
for (i = 0; i < originalData.length; i++) {
sum = 0;
variance = 0;
num_ok = 0;
for (j = Math.max(0, i - rollPeriod + 1); j < i + 1; j++) {
y = originalData[j][1];
if (y === null || isNaN(y))
continue;
num_ok++;
sum += y;
variance += Math.pow(originalData[j][2][2], 2);
}
if (num_ok) {
stddev = Math.sqrt(variance) / num_ok;
value = sum / num_ok;
rollingData[i] = [ originalData[i][0], value,
[value - sigma * stddev, value + sigma * stddev] ];
} else {
// This explicitly preserves NaNs to aid with "independent
// series".
// See testRollingAveragePreservesNaNs.
v = (rollPeriod == 1) ? originalData[i][1] : null;
rollingData[i] = [ originalData[i][0], v, [ v, v ] ];
}
}
return rollingData;
};
})();
© 2015 - 2025 Weber Informatics LLC | Privacy Policy