
assets.lib.dygraphs.datahandler.bars-fractions.js Maven / Gradle / Ivy
/**
* @license
* Copyright 2013 David Eberlein ([email protected])
* MIT-licensed (http://opensource.org/licenses/MIT)
*/
/**
* @fileoverview DataHandler implementation for the combination
* of error bars and fractions options.
* @author David Eberlein ([email protected])
*/
(function() {
/*global Dygraph:false */
"use strict";
/**
* @constructor
* @extends Dygraph.DataHandlers.BarsHandler
*/
Dygraph.DataHandlers.FractionsBarsHandler = function() {
};
var FractionsBarsHandler = Dygraph.DataHandlers.FractionsBarsHandler;
FractionsBarsHandler.prototype = new Dygraph.DataHandlers.BarsHandler();
/** @inheritDoc */
FractionsBarsHandler.prototype.extractSeries = function(rawData, i, options) {
// TODO(danvk): pre-allocate series here.
var series = [];
var x, y, point, num, den, value, stddev, variance;
var mult = 100.0;
var sigma = options.get("sigma");
var logScale = options.get('logscale');
for ( var j = 0; j < rawData.length; j++) {
x = rawData[j][0];
point = rawData[j][i];
if (logScale && point !== null) {
// On the log scale, points less than zero do not exist.
// This will create a gap in the chart.
if (point[0] <= 0 || point[1] <= 0) {
point = null;
}
}
// Extract to the unified data format.
if (point !== null) {
num = point[0];
den = point[1];
if (num !== null && !isNaN(num)) {
value = den ? num / den : 0.0;
stddev = den ? sigma * Math.sqrt(value * (1 - value) / den) : 1.0;
variance = mult * stddev;
y = mult * value;
// preserve original values in extras for further filtering
series.push([ x, y, [ y - variance, y + variance, num, den ] ]);
} else {
series.push([ x, num, [ num, num, num, den ] ]);
}
} else {
series.push([ x, null, [ null, null, null, null ] ]);
}
}
return series;
};
/** @inheritDoc */
FractionsBarsHandler.prototype.rollingAverage =
function(originalData, rollPeriod, options) {
rollPeriod = Math.min(rollPeriod, originalData.length);
var rollingData = [];
var sigma = options.get("sigma");
var wilsonInterval = options.get("wilsonInterval");
var low, high, i, stddev;
var num = 0;
var den = 0; // numerator/denominator
var mult = 100.0;
for (i = 0; i < originalData.length; i++) {
num += originalData[i][2][2];
den += originalData[i][2][3];
if (i - rollPeriod >= 0) {
num -= originalData[i - rollPeriod][2][2];
den -= originalData[i - rollPeriod][2][3];
}
var date = originalData[i][0];
var value = den ? num / den : 0.0;
if (wilsonInterval) {
// For more details on this confidence interval, see:
// http://en.wikipedia.org/wiki/Binomial_confidence_interval
if (den) {
var p = value < 0 ? 0 : value, n = den;
var pm = sigma * Math.sqrt(p * (1 - p) / n + sigma * sigma / (4 * n * n));
var denom = 1 + sigma * sigma / den;
low = (p + sigma * sigma / (2 * den) - pm) / denom;
high = (p + sigma * sigma / (2 * den) + pm) / denom;
rollingData[i] = [ date, p * mult,
[ low * mult, high * mult ] ];
} else {
rollingData[i] = [ date, 0, [ 0, 0 ] ];
}
} else {
stddev = den ? sigma * Math.sqrt(value * (1 - value) / den) : 1.0;
rollingData[i] = [ date, mult * value,
[ mult * (value - stddev), mult * (value + stddev) ] ];
}
}
return rollingData;
};
})();
© 2015 - 2025 Weber Informatics LLC | Privacy Policy