scripts.auto.fm.js Maven / Gradle / Ivy
function printa(arg) { java.lang.System.out.print(arg); }
//function println(arg) { java.lang.System.out.println(arg); }
if ("TEMPLATE(showhelp,false)" === "true") {
var helpdata = files.read("docs/findmax.md");
print(helpdata);
exit();
}
if (params.cycles) {
print("cycles should not be set for this scenario script. Other exit condition take precedence.");
exit();
}
print("Performing FindMax analysis with the following parameters:");
var sample_seconds = TEMPLATE(sample_seconds,10);
print(" sample_seconds="+sample_seconds);
var latency_percentile = TEMPLATE(latency_percentile,0.99);
print(" latency_percentile="+latency_percentile);
var latency_threshold =TEMPLATE(latency_threshold,50.0);
print(" latency_threshold="+latency_threshold);
var minimum_ratio =TEMPLATE(minimum_ratio,0.8);
print(" minimum_ratio="+minimum_ratio);
var averageof =TEMPLATE(averageof,3);
print(" averageof="+averageof);
var initial_base = 0; // ops_s baseline
var initial_step = 1000; // how much to start adding to baseline initially or when baseline moves
var step_growth = 2; // how quickly to increase the step from the previous step
var baserate_gauge = scriptingmetrics.newGauge("findmax.base_rate", initial_base + 0.0);
var rategauge = scriptingmetrics.newGauge("findmax.achieved_rate", 0.0);
var baserate = scriptingmetrics.newGauge("findmax.base_rate", 0.0);
// CREATE SCHEMA
schema_activitydef = params.withDefaults({
type: "diag"
});
schema_activitydef.alias="findmax_schema";
schema_activitydef.threads="1";
schema_activitydef.tags="TEMPLATE(schematags,phase:schema)";
print("Creating schema with schematags:" + schema_activitydef.tags);
scenario.run(schema_activitydef);
// START ITERATING ACTIVITY
activitydef = params.withDefaults({
type: "diag",
threads: "50"
});
activitydef.alias="findmax";
activitydef.cycles="1000000000";
activitydef.recycles="1000000000";
activitydef.tags="TEMPLATE(maintags,phase:main)";
print("Iterating main workload with tags:" + activitydef.tags);
function ops_s(iteration, results) {
return results[iteration].ops_per_second.toFixed(2);
}
function achieved_ratio(iteration, results) {
return results[iteration].achieved_ratio;
}
function p_ms(iteration, results, pctile) {
return results[iteration].latency_snapshot.getValue(pctile) / 1000000.0;
}
// function p99ms(iteration, results) {
// return results[iteration].latency_snapshot.p99ms
// }
function target_rate(iteration, results) {
return results[iteration].target_rate;
}
function lowest_unacceptable_of(result1, result2) {
return result1.target_rate < result2.target_rate ? result1 : result2;
}
scenario.start(activitydef);
printa("\nwarming up client JIT for 10 seconds... ");
activities.findmax.cyclerate = "1000:1.1:restart";
scenario.waitMillis(10000);
activities.findmax.cyclerate = "100:1.1:restart";
print("commencing test");
function testCycleFun(params) {
var rate_summary = "targeting " + params.target_rate + " ops_s (" + params.base + "+" + params.step +")";
print("\n >-- iteration " + params.iteration + " ---> " + rate_summary + " for " + params.sample_seconds + "s");
var result = {};
// print(" target rate is " + params.target_rate + " ops_s");
activities.findmax.cyclerate = ""+params.target_rate+":1.1:restart";
precount = metrics.findmax.cycles.servicetime.count;
var snapshot_reader = metrics.findmax.result.deltaReader;
var old_data = snapshot_reader.getDeltaSnapshot(); // reset
// print(" sampling performance for " + params.sample_seconds + " seconds...");
scenario.waitMillis(params.sample_seconds * 1000);
postcount = metrics.findmax.cycles.servicetime.count;
var count = postcount - precount;
var ops_per_second = count / params.sample_seconds;
rategauge.update(ops_per_second);
var latency_snapshot = snapshot_reader.getDeltaSnapshot(10000);
return {
target_rate: params.target_rate,
count: postcount - precount,
ops_per_second: ops_per_second,
latency_snapshot: latency_snapshot,
achieved_ratio: (count / params.sample_seconds) / params.target_rate,
latency_ms: latency_snapshot.getValue(latency_percentile) / 1000000.0
};
}
function highest_acceptable_of(results, iteration1, iteration2) {
if (iteration1 == 0) {
return iteration2;
}
return results[iteration1].ops_per_second > results[iteration2].ops_per_second ? iteration1 : iteration2;
}
function find_max() {
var results = [];
var iteration = 0;
var highest_acceptable_iteration = 0;
var lowest_unacceptable_iteration = 0;
var base = initial_base;
baserate_gauge.update(base);
var step = initial_step;
while (true) {
iteration++;
// print("\niteration #" + iteration);
var params = {
iteration: iteration,
target_rate: (base + step),
base: base,
step: step,
sample_seconds: sample_seconds
};
step = step * step_growth;
var result = results[iteration] = testCycleFun(params);
var failed_checks = 0;
// latency check
if (result.percentile_ms > latency_threshold) {
failed_checks++;
printa(" ✘(TOO HIGH)")
} else {
printa(" ✔(OK)")
}
print(" p" + (latency_percentile * 100.0) + " " + result.latency_ms + "ms [min " + (minimum_ratio * 100.0).toFixed(2) + "%]"
);
// speedup check
var speedup = (iteration==1 ? 0.0 : result.ops_per_second - results[highest_acceptable_iteration].ops_per_second);
if (speedup < 0.0) {
failed_checks++;
printa(" ✘(SLOWER)")
} else {
printa(" ✔(OK)")
}
print(" speedup " + speedup.toFixed(2) + " [>min 0.0]");
if (failed_checks == 0) {
highest_acceptable_iteration = highest_acceptable_of(results, highest_acceptable_iteration, iteration);
print(" ---> accepting iteration " + highest_acceptable_iteration);
continue;
} else {
print("\n !!! rejecting iteration " + iteration);
if (lowest_unacceptable_iteration == 0) {
lowest_unacceptable_iteration = iteration;
} else {
// keep the more conservative target rate, if both this iteration and another one was not acceptable
lowest_unacceptable_iteration = result.target_rate < results[lowest_unacceptable_iteration].target_rate ?
iteration : lowest_unacceptable_iteration;
}
highest_acceptable_iteration = highest_acceptable_iteration == 0 ? iteration : highest_acceptable_iteration;
print(" target search range is [[ ✔ "
+ results[highest_acceptable_iteration].target_rate
+ "(i"+highest_acceptable_iteration+ ") , ✘ "
+ results[lowest_unacceptable_iteration].target_rate
+ "(i"+lowest_unacceptable_iteration+")"
+ " ))");
// print(
// " ✔ i" + highest_acceptable_iteration + "(" +
// results[highest_acceptable_iteration].ops_per_second + " of target=" +
// results[highest_acceptable_iteration].target_rate + ") <- highest acceptable iteration");
//
// print(" ✘ i" + lowest_unacceptable_iteration + "(" +
// results[lowest_unacceptable_iteration].ops_per_second + " of target=" +
// results[lowest_unacceptable_iteration].target_rate +") <- lowest unacceptable iteration");
var too_fast = results[lowest_unacceptable_iteration].target_rate;
if (base + step >= too_fast && results[highest_acceptable_iteration].target_rate + initial_step < too_fast) {
base = results[highest_acceptable_iteration].target_rate;
baserate_gauge.update(base);
step = initial_step;
print(" continuing search at base:" + base + " step:" + step);
activities.findmax.cyclerate = ""+base+":1.1:restart";
print("\n settling load at base for + " + sample_seconds + "s before active sampling");
scenario.waitMillis(sample_seconds * 1000);
} else {
print("\n search complete");
print(" MAX= " + ops_s(highest_acceptable_iteration, results) + " ops_s"
+ " @ " +
(p_ms(highest_acceptable_iteration, results, latency_percentile)*100.0)
+ "ms p"+
(latency_percentile*100.0)+" latency");
break;
}
}
}
return {
ops_s: ops_s(highest_acceptable_iteration, results),
target_rate: target_rate(highest_acceptable_iteration, results),
latency_ms: p_ms(highest_acceptable_iteration, results,latency_percentile)
};
}
overallresults = [];
for (var testrun = 0; testrun < averageof; testrun++) {
overallresults[testrun] = find_max();
}
scenario.stop(activitydef);
var total_ops_s = 0.0;
var total_latency = 0.0;
overallresults.forEach(
function (x) {
print("\ntest run:");
print("ops_s: " + x.ops_s);
print("p"+latency_percentile+"ms: " + x.latency_ms);
print("target_rate: " + x.target_rate);
total_ops_s += x.ops_s;
total_latency += x.latency_ms;
}
);
var average_rate = total_ops_s / (averageof + 0.0);
var average_latency = total_latency / (averageof + 0.0);
print("RESULTS:");
print("averaging " + averageof + " runs, the maximum throughput of this workload");
print("at or below " + latency_threshold + "ms and");
print("at or above " + minimum_ratio + " of target rate achieved, is");
print(average_rate + " ops_s, with an average latency of " + average_latency);
//scenario.reportMetrics();
© 2015 - 2025 Weber Informatics LLC | Privacy Policy