
pr.javaanpr.1.2.2.source-code.config.xml Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of javaanpr Show documentation
Show all versions of javaanpr Show documentation
JavaANPR is an automatic number plate recognition software, which implements algorithmic and mathematical principles from field of artificial intelligence, machine vision and neural networks. It was created by Ondrej Martinsky in 2006 and 2007 as part of the research plan "Security-oriented research in information technology, MSM 0021630528" at Brno University of Technology.
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>Global configuration file for the Automatic Number Plate Recognition System</comment> <!-- PHOTO --> <!-- thresholding mode 0 - plain thresholding N - adaptive thresholding with radius N (must be greater or equal than 1) --> <entry key="photo_adaptivethresholdingradius">7</entry> <!-- thresholding mode --> <!-- SKEW DETECTION --> <!-- skew detection 0 - disable 1 - enable --> <entry key="intelligence_skewdetection">0</entry> <!-- skew detection --> <!-- PLATE CANDIDATES SEARCH --> <entry key="intelligence_numberOfBands">3</entry> <!-- how many bands from image should be extracted from image vertical graph --> <entry key="intelligence_numberOfPlates">3</entry> <!-- how many plates from band should be extracted from band horizontal graph --> <entry key="intelligence_numberOfChars">20</entry> <!-- maximum number of chars extracted from plate's horizontal graph --> <!-- PLATE HEURISTICS (DETERMINES CONSTRAINTS FOR PLATE ACCEPTANCE) --> <entry key="intelligence_minimumChars">5</entry> <!-- minimum number of detected characters --> <entry key="intelligence_maximumChars">15</entry> <!-- maximum number of detected characters --> <entry key="intelligence_maxCharWidthDispersion">0.5</entry> <!-- maximum character width dispersion --> <entry key="intelligence_minPlateWidthHeightRatio">0.5</entry> <!-- plate proportions: minimum plate width/height ratio --> <entry key="intelligence_maxPlateWidthHeightRatio">15.0</entry> <!-- plate proportions: maximum plate width/height ratio --> <!-- CHARACTER HEURISTICS (DETERMINES CONSTRAINTS FOR CHARACTERS ACCEPTANCE) --> <entry key="intelligence_minCharWidthHeightRatio">0.1</entry> <!-- char proportions: minimum char width/height ratio --> <entry key="intelligence_maxCharWidthHeightRatio">0.92</entry> <!-- char proportions: maximum char width/height ratio --> <entry key="intelligence_maxBrightnessCostDispersion">0.161</entry> <!-- maximum character brightness difference (from other chars) --> <entry key="intelligence_maxContrastCostDispersion">0.1</entry> <!-- maximum character contrast difference (from other chars) --> <entry key="intelligence_maxHueCostDispersion">0.145</entry> <!-- maximum character hue difference (from other chars) --> <entry key="intelligence_maxSaturationCostDispersion">0.24</entry> <!-- maximum character saturation difference (from other chars) --> <entry key="intelligence_maxHeightCostDispersion">0.2</entry> <!-- maximum character height difference (from other chars) --> <entry key="intelligence_maxSimilarityCostDispersion">100.0</entry> <!-- maximum character cost (recognition process) --> <!-- CHARACTER NORMALIZATION, FEATURE EXTRACTION AND RECOGNITION MODES --> <entry key="char_normalizeddimensions_x">8</entry> <!-- normalized character width (downsampled) --> <entry key="char_normalizeddimensions_y">13</entry> <!-- normalized character height (downsampled) --> <!-- path to directory containing already normalized characters. Dimensions of these characters must match with normalized characters width and height --> <entry key="char_learnAlphabetPath">/alphabets/alphabet_8x13</entry> <!-- character downsampling methods 0 - linear resampling (good for preserving edges (edge detection)) 1 - weighted average (good for direct pixel mapping) --> <entry key="char_resizeMethod">1</entry> <!-- character downsampling method --> <!-- feature extraction method 0 - direct pixel mapping (good for blurred characters) 1 - edge detection (good for skewed/deformed characters) --> <entry key="char_featuresExtractionMethod">0</entry> <!-- feature extraction method. 0=map, 1=edge --> <!-- pattern classification methods 0 - euclidean distance pattern matching 1 - feedforward neural network --> <entry key="intelligence_classification_method">0</entry> <!-- classification method. 0=euclidean distance pattern mathing, 1=neural network --> <!-- NEURAL NETWORK LEARNING PARAMETERS --> <entry key="char_neuralNetworkPath">/neuralnetworks/network_avgres_813_map.xml</entry> <!-- neural network topology file (caution : dimensions must match with selected extraction method) --> <entry key="neural_maxk">8000</entry> <!-- maximum number of iterations during learning process --> <entry key="neural_eps">0.07</entry> <!-- expected error ratio --> <entry key="neural_lambda">0.05</entry> <!-- lambda factor : speed of convergence --> <entry key="neural_micro">0.5</entry> <!-- micro factor : persistance ratio --> <entry key="neural_topology">20</entry> <!-- number of neurons in middle nn layer --> <!-- SYNTAX ANALYSIS OF RECOGNIZED PLATE --> <!-- syntax analysis mode : 0 - do not correct 1 - correct characters only if character count matchs 2 - correct characters anyway (eliminate redundant characters) --> <entry key="intelligence_syntaxanalysis">2</entry> <!-- syntax analysis mode --> <entry key="intelligence_syntaxDescriptionFile">/syntax/syntax.xml</entry> <!-- CAR SNAPSHOT, BAND, PLATE GRAPH ANALYSIS --> <entry key="carsnapshot_graphrankfilter">9</entry> <entry key="carsnapshot_distributormargins">25</entry> <entry key="carsnapshotgraph_peakDiffMultiplicationConstant">0.1</entry> <entry key="carsnapshotgraph_peakfootconstant">0.55</entry> <entry key="bandgraph_peakDiffMultiplicationConstant">0.2</entry> <entry key="bandgraph_peakfootconstant">0.55</entry> <entry key="platehorizontalgraph_detectionType">1</entry> <!-- 1=edge detection 0=magnitude derivate --> <entry key="platehorizontalgraph_peakfootconstant">0.05</entry> <entry key="plateverticalgraph_peakfootconstant">0.42</entry> <entry key="plategraph_rel_minpeaksize">0.86</entry> <entry key="plategraph_peakfootconstant">0.7</entry> </properties>
© 2015 - 2025 Weber Informatics LLC | Privacy Policy