![JAR search and dependency download from the Maven repository](/logo.png)
pr.javaanpr.1.2.5.source-code.config.xml Maven / Gradle / Ivy
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>Global configuration file for the Automatic Number Plate Recognition System</comment> <!-- PHOTO --> <!-- thresholding mode 0 - plain thresholding N - adaptive thresholding with radius N (must be greater or equal than 1) --> <entry key="photo_adaptivethresholdingradius">7</entry> <!-- thresholding mode --> <!-- SKEW DETECTION --> <!-- skew detection 0 - disable 1 - enable --> <entry key="intelligence_skewdetection">0</entry> <!-- skew detection --> <!-- PLATE CANDIDATES SEARCH --> <entry key="intelligence_numberOfBands">3</entry> <!-- how many bands from image should be extracted from image vertical graph --> <entry key="intelligence_numberOfPlates">3</entry> <!-- how many plates from band should be extracted from band horizontal graph --> <entry key="intelligence_numberOfChars">20</entry> <!-- maximum number of chars extracted from plate's horizontal graph --> <!-- PLATE HEURISTICS (DETERMINES CONSTRAINTS FOR PLATE ACCEPTANCE) --> <entry key="intelligence_minimumChars">5</entry> <!-- minimum number of detected characters --> <entry key="intelligence_maximumChars">15</entry> <!-- maximum number of detected characters --> <entry key="intelligence_maxCharWidthDispersion">0.5</entry> <!-- maximum character width dispersion --> <entry key="intelligence_minPlateWidthHeightRatio">0.5</entry> <!-- plate proportions: minimum plate width/height ratio --> <entry key="intelligence_maxPlateWidthHeightRatio">15.0</entry> <!-- plate proportions: maximum plate width/height ratio --> <!-- CHARACTER HEURISTICS (DETERMINES CONSTRAINTS FOR CHARACTERS ACCEPTANCE) --> <entry key="intelligence_minCharWidthHeightRatio">0.1</entry> <!-- char proportions: minimum char width/height ratio --> <entry key="intelligence_maxCharWidthHeightRatio">0.92</entry> <!-- char proportions: maximum char width/height ratio --> <entry key="intelligence_maxBrightnessCostDispersion">0.161</entry> <!-- maximum character brightness difference (from other chars) --> <entry key="intelligence_maxContrastCostDispersion">0.1</entry> <!-- maximum character contrast difference (from other chars) --> <entry key="intelligence_maxHueCostDispersion">0.145</entry> <!-- maximum character hue difference (from other chars) --> <entry key="intelligence_maxSaturationCostDispersion">0.24</entry> <!-- maximum character saturation difference (from other chars) --> <entry key="intelligence_maxHeightCostDispersion">0.2</entry> <!-- maximum character height difference (from other chars) --> <entry key="intelligence_maxSimilarityCostDispersion">100.0</entry> <!-- maximum character cost (recognition process) --> <!-- CHARACTER NORMALIZATION, FEATURE EXTRACTION AND RECOGNITION MODES --> <entry key="char_normalizeddimensions_x">8</entry> <!-- normalized character width (downsampled) --> <entry key="char_normalizeddimensions_y">13</entry> <!-- normalized character height (downsampled) --> <!-- path to directory containing already normalized characters. Dimensions of these characters must match with normalized characters width and height --> <entry key="char_learnAlphabetPath">/alphabets/alphabet_8x13</entry> <!-- character downsampling methods 0 - linear resampling (good for preserving edges (edge detection)) 1 - weighted average (good for direct pixel mapping) --> <entry key="char_resizeMethod">1</entry> <!-- character downsampling method --> <!-- feature extraction method 0 - direct pixel mapping (good for blurred characters) 1 - edge detection (good for skewed/deformed characters) --> <entry key="char_featuresExtractionMethod">0</entry> <!-- feature extraction method. 0=map, 1=edge --> <!-- pattern classification methods 0 - euclidean distance pattern matching 1 - feedforward neural network --> <entry key="intelligence_classification_method">0</entry> <!-- classification method. 0=euclidean distance pattern mathing, 1=neural network --> <!-- NEURAL NETWORK LEARNING PARAMETERS --> <entry key="char_neuralNetworkPath">neuralnetworks/network_avgres_813_map.xml</entry> <!-- neural network topology file (caution : dimensions must match with selected extraction method) --> <entry key="neural_maxk">8000</entry> <!-- maximum number of iterations during learning process --> <entry key="neural_eps">0.07</entry> <!-- expected error ratio --> <entry key="neural_lambda">0.05</entry> <!-- lambda factor : speed of convergence --> <entry key="neural_micro">0.5</entry> <!-- micro factor : persistance ratio --> <entry key="neural_topology">20</entry> <!-- number of neurons in middle nn layer --> <!-- SYNTAX ANALYSIS OF RECOGNIZED PLATE --> <!-- syntax analysis mode : 0 - do not correct 1 - correct characters only if character count matchs 2 - correct characters anyway (eliminate redundant characters) --> <entry key="intelligence_syntaxanalysis">2</entry> <!-- syntax analysis mode --> <entry key="intelligence_syntaxDescriptionFile">syntax/syntax.xml</entry> <!-- CAR SNAPSHOT, BAND, PLATE GRAPH ANALYSIS --> <entry key="carsnapshot_graphrankfilter">9</entry> <entry key="carsnapshot_distributormargins">25</entry> <entry key="carsnapshotgraph_peakDiffMultiplicationConstant">0.1</entry> <entry key="carsnapshotgraph_peakfootconstant">0.55</entry> <entry key="bandgraph_peakDiffMultiplicationConstant">0.2</entry> <entry key="bandgraph_peakfootconstant">0.55</entry> <entry key="platehorizontalgraph_detectionType">1</entry> <!-- 1=edge detection 0=magnitude derivate --> <entry key="platehorizontalgraph_peakfootconstant">0.05</entry> <entry key="plateverticalgraph_peakfootconstant">0.42</entry> <entry key="plategraph_rel_minpeaksize">0.86</entry> <entry key="plategraph_peakfootconstant">0.7</entry> </properties>
© 2015 - 2025 Weber Informatics LLC | Privacy Policy