All Downloads are FREE. Search and download functionalities are using the official Maven repository.

goog.math.interpolator.pchip1.js Maven / Gradle / Ivy

Go to download

The Google Closure Library is a collection of JavaScript code designed for use with the Google Closure JavaScript Compiler. This non-official distribution was prepared by the ClojureScript team at http://clojure.org/

There is a newer version: 0.0-20230227-c7c0a541
Show newest version
// Copyright 2012 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/**
 * @fileoverview A one dimensional monotone cubic spline interpolator.
 *
 * See http://en.wikipedia.org/wiki/Monotone_cubic_interpolation.
 *
 */

goog.provide('goog.math.interpolator.Pchip1');

goog.require('goog.math');
goog.require('goog.math.interpolator.Spline1');



/**
 * A one dimensional monotone cubic spline interpolator.
 * @extends {goog.math.interpolator.Spline1}
 * @constructor
 * @final
 */
goog.math.interpolator.Pchip1 = function() {
  goog.math.interpolator.Pchip1.base(this, 'constructor');
};
goog.inherits(goog.math.interpolator.Pchip1, goog.math.interpolator.Spline1);


/** @override */
goog.math.interpolator.Pchip1.prototype.computeDerivatives = function(
    dx, slope) {
  var len = dx.length;
  var deriv = new Array(len + 1);
  for (var i = 1; i < len; ++i) {
    if (goog.math.sign(slope[i - 1]) * goog.math.sign(slope[i]) <= 0) {
      deriv[i] = 0;
    } else {
      var w1 = 2 * dx[i] + dx[i - 1];
      var w2 = dx[i] + 2 * dx[i - 1];
      deriv[i] = (w1 + w2) / (w1 / slope[i - 1] + w2 / slope[i]);
    }
  }
  deriv[0] =
      this.computeDerivativeAtBoundary_(dx[0], dx[1], slope[0], slope[1]);
  deriv[len] = this.computeDerivativeAtBoundary_(
      dx[len - 1], dx[len - 2], slope[len - 1], slope[len - 2]);
  return deriv;
};


/**
 * Computes the derivative of a data point at a boundary.
 * @param {number} dx0 The spacing of the 1st data point.
 * @param {number} dx1 The spacing of the 2nd data point.
 * @param {number} slope0 The slope of the 1st data point.
 * @param {number} slope1 The slope of the 2nd data point.
 * @return {number} The derivative at the 1st data point.
 * @private
 */
goog.math.interpolator.Pchip1.prototype.computeDerivativeAtBoundary_ = function(
    dx0, dx1, slope0, slope1) {
  var deriv = ((2 * dx0 + dx1) * slope0 - dx0 * slope1) / (dx0 + dx1);
  if (goog.math.sign(deriv) != goog.math.sign(slope0)) {
    deriv = 0;
  } else if (
      goog.math.sign(slope0) != goog.math.sign(slope1) &&
      Math.abs(deriv) > Math.abs(3 * slope0)) {
    deriv = 3 * slope0;
  }
  return deriv;
};




© 2015 - 2025 Weber Informatics LLC | Privacy Policy