All Downloads are FREE. Search and download functionalities are using the official Maven repository.

static.lib.dagre-0.7.4.dagre.core.js Maven / Gradle / Ivy

There is a newer version: 4.3.2
Show newest version
!function(e){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=e();else if("function"==typeof define&&define.amd)define([],e);else{var f;"undefined"!=typeof window?f=window:"undefined"!=typeof global?f=global:"undefined"!=typeof self&&(f=self),f.dagre=e()}}(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o 0; --i) {
        entry = buckets[i].dequeue();
        if (entry) {
          results = results.concat(removeNode(g, buckets, zeroIdx, entry, true));
          break;
        }
      }
    }
  }

  return results;
}

function removeNode(g, buckets, zeroIdx, entry, collectPredecessors) {
  var results = collectPredecessors ? [] : undefined;

  _.each(g.inEdges(entry.v), function(edge) {
    var weight = g.edge(edge),
        uEntry = g.node(edge.v);

    if (collectPredecessors) {
      results.push({ v: edge.v, w: edge.w });
    }

    uEntry.out -= weight;
    assignBucket(buckets, zeroIdx, uEntry);
  });

  _.each(g.outEdges(entry.v), function(edge) {
    var weight = g.edge(edge),
        w = edge.w,
        wEntry = g.node(w);
    wEntry["in"] -= weight;
    assignBucket(buckets, zeroIdx, wEntry);
  });

  g.removeNode(entry.v);

  return results;
}

function buildState(g, weightFn) {
  var fasGraph = new Graph(),
      maxIn = 0,
      maxOut = 0;

  _.each(g.nodes(), function(v) {
    fasGraph.setNode(v, { v: v, "in": 0, out: 0 });
  });

  // Aggregate weights on nodes, but also sum the weights across multi-edges
  // into a single edge for the fasGraph.
  _.each(g.edges(), function(e) {
    var prevWeight = fasGraph.edge(e.v, e.w) || 0,
        weight = weightFn(e),
        edgeWeight = prevWeight + weight;
    fasGraph.setEdge(e.v, e.w, edgeWeight);
    maxOut = Math.max(maxOut, fasGraph.node(e.v).out += weight);
    maxIn  = Math.max(maxIn,  fasGraph.node(e.w)["in"]  += weight);
  });

  var buckets = _.range(maxOut + maxIn + 3).map(function() { return new List(); });
  var zeroIdx = maxIn + 1;

  _.each(fasGraph.nodes(), function(v) {
    assignBucket(buckets, zeroIdx, fasGraph.node(v));
  });

  return { graph: fasGraph, buckets: buckets, zeroIdx: zeroIdx };
}

function assignBucket(buckets, zeroIdx, entry) {
  if (!entry.out) {
    buckets[0].enqueue(entry);
  } else if (!entry["in"]) {
    buckets[buckets.length - 1].enqueue(entry);
  } else {
    buckets[entry.out - entry["in"] + zeroIdx].enqueue(entry);
  }
}

},{"./data/list":5,"./graphlib":7,"./lodash":10}],9:[function(require,module,exports){
"use strict";

var _ = require("./lodash"),
    acyclic = require("./acyclic"),
    normalize = require("./normalize"),
    rank = require("./rank"),
    normalizeRanks = require("./util").normalizeRanks,
    parentDummyChains = require("./parent-dummy-chains"),
    removeEmptyRanks = require("./util").removeEmptyRanks,
    nestingGraph = require("./nesting-graph"),
    addBorderSegments = require("./add-border-segments"),
    coordinateSystem = require("./coordinate-system"),
    order = require("./order"),
    position = require("./position"),
    util = require("./util"),
    Graph = require("./graphlib").Graph;

module.exports = layout;

function layout(g, opts) {
  var time = opts && opts.debugTiming ? util.time : util.notime;
  time("layout", function() {
    var layoutGraph = time("  buildLayoutGraph",
                               function() { return buildLayoutGraph(g); });
    time("  runLayout",        function() { runLayout(layoutGraph, time); });
    time("  updateInputGraph", function() { updateInputGraph(g, layoutGraph); });
  });
}

function runLayout(g, time) {
  time("    makeSpaceForEdgeLabels", function() { makeSpaceForEdgeLabels(g); });
  time("    removeSelfEdges",        function() { removeSelfEdges(g); });
  time("    acyclic",                function() { acyclic.run(g); });
  time("    nestingGraph.run",       function() { nestingGraph.run(g); });
  time("    rank",                   function() { rank(util.asNonCompoundGraph(g)); });
  time("    injectEdgeLabelProxies", function() { injectEdgeLabelProxies(g); });
  time("    removeEmptyRanks",       function() { removeEmptyRanks(g); });
  time("    nestingGraph.cleanup",   function() { nestingGraph.cleanup(g); });
  time("    normalizeRanks",         function() { normalizeRanks(g); });
  time("    assignRankMinMax",       function() { assignRankMinMax(g); });
  time("    removeEdgeLabelProxies", function() { removeEdgeLabelProxies(g); });
  time("    normalize.run",          function() { normalize.run(g); });
  time("    parentDummyChains",      function() { parentDummyChains(g); });
  time("    addBorderSegments",      function() { addBorderSegments(g); });
  time("    order",                  function() { order(g); });
  time("    insertSelfEdges",        function() { insertSelfEdges(g); });
  time("    adjustCoordinateSystem", function() { coordinateSystem.adjust(g); });
  time("    position",               function() { position(g); });
  time("    positionSelfEdges",      function() { positionSelfEdges(g); });
  time("    removeBorderNodes",      function() { removeBorderNodes(g); });
  time("    normalize.undo",         function() { normalize.undo(g); });
  time("    fixupEdgeLabelCoords",   function() { fixupEdgeLabelCoords(g); });
  time("    undoCoordinateSystem",   function() { coordinateSystem.undo(g); });
  time("    translateGraph",         function() { translateGraph(g); });
  time("    assignNodeIntersects",   function() { assignNodeIntersects(g); });
  time("    reversePoints",          function() { reversePointsForReversedEdges(g); });
  time("    acyclic.undo",           function() { acyclic.undo(g); });
}

/*
 * Copies final layout information from the layout graph back to the input
 * graph. This process only copies whitelisted attributes from the layout graph
 * to the input graph, so it serves as a good place to determine what
 * attributes can influence layout.
 */
function updateInputGraph(inputGraph, layoutGraph) {
  _.each(inputGraph.nodes(), function(v) {
    var inputLabel = inputGraph.node(v),
        layoutLabel = layoutGraph.node(v);

    if (inputLabel) {
      inputLabel.x = layoutLabel.x;
      inputLabel.y = layoutLabel.y;

      if (layoutGraph.children(v).length) {
        inputLabel.width = layoutLabel.width;
        inputLabel.height = layoutLabel.height;
      }
    }
  });

  _.each(inputGraph.edges(), function(e) {
    var inputLabel = inputGraph.edge(e),
        layoutLabel = layoutGraph.edge(e);

    inputLabel.points = layoutLabel.points;
    if (_.has(layoutLabel, "x")) {
      inputLabel.x = layoutLabel.x;
      inputLabel.y = layoutLabel.y;
    }
  });

  inputGraph.graph().width = layoutGraph.graph().width;
  inputGraph.graph().height = layoutGraph.graph().height;
}

var graphNumAttrs = ["nodesep", "edgesep", "ranksep", "marginx", "marginy"],
    graphDefaults = { ranksep: 50, edgesep: 20, nodesep: 50, rankdir: "tb" },
    graphAttrs = ["acyclicer", "ranker", "rankdir", "align"],
    nodeNumAttrs = ["width", "height"],
    nodeDefaults = { width: 0, height: 0 },
    edgeNumAttrs = ["minlen", "weight", "width", "height", "labeloffset"],
    edgeDefaults = {
      minlen: 1, weight: 1, width: 0, height: 0,
      labeloffset: 10, labelpos: "r"
    },
    edgeAttrs = ["labelpos"];

/*
 * Constructs a new graph from the input graph, which can be used for layout.
 * This process copies only whitelisted attributes from the input graph to the
 * layout graph. Thus this function serves as a good place to determine what
 * attributes can influence layout.
 */
function buildLayoutGraph(inputGraph) {
  var g = new Graph({ multigraph: true, compound: true }),
      graph = canonicalize(inputGraph.graph());

  g.setGraph(_.merge({},
    graphDefaults,
    selectNumberAttrs(graph, graphNumAttrs),
    _.pick(graph, graphAttrs)));

  _.each(inputGraph.nodes(), function(v) {
    var node = canonicalize(inputGraph.node(v));
    g.setNode(v, _.defaults(selectNumberAttrs(node, nodeNumAttrs), nodeDefaults));
    g.setParent(v, inputGraph.parent(v));
  });

  _.each(inputGraph.edges(), function(e) {
    var edge = canonicalize(inputGraph.edge(e));
    g.setEdge(e, _.merge({},
      edgeDefaults,
      selectNumberAttrs(edge, edgeNumAttrs),
      _.pick(edge, edgeAttrs)));
  });

  return g;
}

/*
 * This idea comes from the Gansner paper: to account for edge labels in our
 * layout we split each rank in half by doubling minlen and halving ranksep.
 * Then we can place labels at these mid-points between nodes.
 *
 * We also add some minimal padding to the width to push the label for the edge
 * away from the edge itself a bit.
 */
function makeSpaceForEdgeLabels(g) {
  var graph = g.graph();
  graph.ranksep /= 2;
  _.each(g.edges(), function(e) {
    var edge = g.edge(e);
    edge.minlen *= 2;
    if (edge.labelpos.toLowerCase() !== "c") {
      if (graph.rankdir === "TB" || graph.rankdir === "BT") {
        edge.width += edge.labeloffset;
      } else {
        edge.height += edge.labeloffset;
      }
    }
  });
}

/*
 * Creates temporary dummy nodes that capture the rank in which each edge's
 * label is going to, if it has one of non-zero width and height. We do this
 * so that we can safely remove empty ranks while preserving balance for the
 * label's position.
 */
function injectEdgeLabelProxies(g) {
  _.each(g.edges(), function(e) {
    var edge = g.edge(e);
    if (edge.width && edge.height) {
      var v = g.node(e.v),
          w = g.node(e.w),
          label = { rank: (w.rank - v.rank) / 2 + v.rank, e: e };
      util.addDummyNode(g, "edge-proxy", label, "_ep");
    }
  });
}

function assignRankMinMax(g) {
  var maxRank = 0;
  _.each(g.nodes(), function(v) {
    var node = g.node(v);
    if (node.borderTop) {
      node.minRank = g.node(node.borderTop).rank;
      node.maxRank = g.node(node.borderBottom).rank;
      maxRank = _.max(maxRank, node.maxRank);
    }
  });
  g.graph().maxRank = maxRank;
}

function removeEdgeLabelProxies(g) {
  _.each(g.nodes(), function(v) {
    var node = g.node(v);
    if (node.dummy === "edge-proxy") {
      g.edge(node.e).labelRank = node.rank;
      g.removeNode(v);
    }
  });
}

function translateGraph(g) {
  var minX = Number.POSITIVE_INFINITY,
      maxX = 0,
      minY = Number.POSITIVE_INFINITY,
      maxY = 0,
      graphLabel = g.graph(),
      marginX = graphLabel.marginx || 0,
      marginY = graphLabel.marginy || 0;

  function getExtremes(attrs) {
    var x = attrs.x,
        y = attrs.y,
        w = attrs.width,
        h = attrs.height;
    minX = Math.min(minX, x - w / 2);
    maxX = Math.max(maxX, x + w / 2);
    minY = Math.min(minY, y - h / 2);
    maxY = Math.max(maxY, y + h / 2);
  }

  _.each(g.nodes(), function(v) { getExtremes(g.node(v)); });
  _.each(g.edges(), function(e) {
    var edge = g.edge(e);
    if (_.has(edge, "x")) {
      getExtremes(edge);
    }
  });

  minX -= marginX;
  minY -= marginY;

  _.each(g.nodes(), function(v) {
    var node = g.node(v);
    node.x -= minX;
    node.y -= minY;
  });

  _.each(g.edges(), function(e) {
    var edge = g.edge(e);
    _.each(edge.points, function(p) {
      p.x -= minX;
      p.y -= minY;
    });
    if (_.has(edge, "x")) { edge.x -= minX; }
    if (_.has(edge, "y")) { edge.y -= minY; }
  });

  graphLabel.width = maxX - minX + marginX;
  graphLabel.height = maxY - minY + marginY;
}

function assignNodeIntersects(g) {
  _.each(g.edges(), function(e) {
    var edge = g.edge(e),
        nodeV = g.node(e.v),
        nodeW = g.node(e.w),
        p1, p2;
    if (!edge.points) {
      edge.points = [];
      p1 = nodeW;
      p2 = nodeV;
    } else {
      p1 = edge.points[0];
      p2 = edge.points[edge.points.length - 1];
    }
    edge.points.unshift(util.intersectRect(nodeV, p1));
    edge.points.push(util.intersectRect(nodeW, p2));
  });
}

function fixupEdgeLabelCoords(g) {
  _.each(g.edges(), function(e) {
    var edge = g.edge(e);
    if (_.has(edge, "x")) {
      if (edge.labelpos === "l" || edge.labelpos === "r") {
        edge.width -= edge.labeloffset;
      }
      switch (edge.labelpos) {
        case "l": edge.x -= edge.width / 2 + edge.labeloffset; break;
        case "r": edge.x += edge.width / 2 + edge.labeloffset; break;
      }
    }
  });
}

function reversePointsForReversedEdges(g) {
  _.each(g.edges(), function(e) {
    var edge = g.edge(e);
    if (edge.reversed) {
      edge.points.reverse();
    }
  });
}

function removeBorderNodes(g) {
  _.each(g.nodes(), function(v) {
    if (g.children(v).length) {
      var node = g.node(v),
          t = g.node(node.borderTop),
          b = g.node(node.borderBottom),
          l = g.node(_.last(node.borderLeft)),
          r = g.node(_.last(node.borderRight));

      node.width = Math.abs(r.x - l.x);
      node.height = Math.abs(b.y - t.y);
      node.x = l.x + node.width / 2;
      node.y = t.y + node.height / 2;
    }
  });

  _.each(g.nodes(), function(v) {
    if (g.node(v).dummy === "border") {
      g.removeNode(v);
    }
  });
}

function removeSelfEdges(g) {
  _.each(g.edges(), function(e) {
    if (e.v === e.w) {
      var node = g.node(e.v);
      if (!node.selfEdges) {
        node.selfEdges = [];
      }
      node.selfEdges.push({ e: e, label: g.edge(e) });
      g.removeEdge(e);
    }
  });
}

function insertSelfEdges(g) {
  var layers = util.buildLayerMatrix(g);
  _.each(layers, function(layer) {
    var orderShift = 0;
    _.each(layer, function(v, i) {
      var node = g.node(v);
      node.order = i + orderShift;
      _.each(node.selfEdges, function(selfEdge) {
        util.addDummyNode(g, "selfedge", {
          width: selfEdge.label.width,
          height: selfEdge.label.height,
          rank: node.rank,
          order: i + (++orderShift),
          e: selfEdge.e,
          label: selfEdge.label
        }, "_se");
      });
      delete node.selfEdges;
    });
  });
}

function positionSelfEdges(g) {
  _.each(g.nodes(), function(v) {
    var node = g.node(v);
    if (node.dummy === "selfedge") {
      var selfNode = g.node(node.e.v),
          x = selfNode.x + selfNode.width / 2,
          y = selfNode.y,
          dx = node.x - x,
          dy = selfNode.height / 2;
      g.setEdge(node.e, node.label);
      g.removeNode(v);
      node.label.points = [
        { x: x + 2 * dx / 3, y: y - dy },
        { x: x + 5 * dx / 6, y: y - dy },
        { x: x +     dx    , y: y },
        { x: x + 5 * dx / 6, y: y + dy },
        { x: x + 2 * dx / 3, y: y + dy },
      ];
      node.label.x = node.x;
      node.label.y = node.y;
    }
  });
}

function selectNumberAttrs(obj, attrs) {
  return _.mapValues(_.pick(obj, attrs), Number);
}

function canonicalize(attrs) {
  var newAttrs = {};
  _.each(attrs, function(v, k) {
    newAttrs[k.toLowerCase()] = v;
  });
  return newAttrs;
}

},{"./acyclic":2,"./add-border-segments":3,"./coordinate-system":4,"./graphlib":7,"./lodash":10,"./nesting-graph":11,"./normalize":12,"./order":17,"./parent-dummy-chains":22,"./position":24,"./rank":26,"./util":29}],10:[function(require,module,exports){
/* global window */

var lodash;

if (typeof require === "function") {
  try {
    lodash = require("lodash");
  } catch (e) {}
}

if (!lodash) {
  lodash = window._;
}

module.exports = lodash;

},{"lodash":undefined}],11:[function(require,module,exports){
var _ = require("./lodash"),
    util = require("./util");

module.exports = {
  run: run,
  cleanup: cleanup
};

/*
 * A nesting graph creates dummy nodes for the tops and bottoms of subgraphs,
 * adds appropriate edges to ensure that all cluster nodes are placed between
 * these boundries, and ensures that the graph is connected.
 *
 * In addition we ensure, through the use of the minlen property, that nodes
 * and subgraph border nodes to not end up on the same rank.
 *
 * Preconditions:
 *
 *    1. Input graph is a DAG
 *    2. Nodes in the input graph has a minlen attribute
 *
 * Postconditions:
 *
 *    1. Input graph is connected.
 *    2. Dummy nodes are added for the tops and bottoms of subgraphs.
 *    3. The minlen attribute for nodes is adjusted to ensure nodes do not
 *       get placed on the same rank as subgraph border nodes.
 *
 * The nesting graph idea comes from Sander, "Layout of Compound Directed
 * Graphs."
 */
function run(g) {
  var root = util.addDummyNode(g, "root", {}, "_root"),
      depths = treeDepths(g),
      height = _.max(depths) - 1,
      nodeSep = 2 * height + 1;

  g.graph().nestingRoot = root;

  // Multiply minlen by nodeSep to align nodes on non-border ranks.
  _.each(g.edges(), function(e) { g.edge(e).minlen *= nodeSep; });

  // Calculate a weight that is sufficient to keep subgraphs vertically compact
  var weight = sumWeights(g) + 1;

  // Create border nodes and link them up
  _.each(g.children(), function(child) {
    dfs(g, root, nodeSep, weight, height, depths, child);
  });

  // Save the multiplier for node layers for later removal of empty border
  // layers.
  g.graph().nodeRankFactor = nodeSep;
}

function dfs(g, root, nodeSep, weight, height, depths, v) {
  var children = g.children(v);
  if (!children.length) {
    if (v !== root) {
      g.setEdge(root, v, { weight: 0, minlen: nodeSep });
    }
    return;
  }

  var top = util.addBorderNode(g, "_bt"),
      bottom = util.addBorderNode(g, "_bb"),
      label = g.node(v);

  g.setParent(top, v);
  label.borderTop = top;
  g.setParent(bottom, v);
  label.borderBottom = bottom;

  _.each(children, function(child) {
    dfs(g, root, nodeSep, weight, height, depths, child);

    var childNode = g.node(child),
        childTop = childNode.borderTop ? childNode.borderTop : child,
        childBottom = childNode.borderBottom ? childNode.borderBottom : child,
        thisWeight = childNode.borderTop ? weight : 2 * weight,
        minlen = childTop !== childBottom ? 1 : height - depths[v] + 1;

    g.setEdge(top, childTop, {
      weight: thisWeight,
      minlen: minlen,
      nestingEdge: true
    });

    g.setEdge(childBottom, bottom, {
      weight: thisWeight,
      minlen: minlen,
      nestingEdge: true
    });
  });

  if (!g.parent(v)) {
    g.setEdge(root, top, { weight: 0, minlen: height + depths[v] });
  }
}

function treeDepths(g) {
  var depths = {};
  function dfs(v, depth) {
    var children = g.children(v);
    if (children && children.length) {
      _.each(children, function(child) {
        dfs(child, depth + 1);
      });
    }
    depths[v] = depth;
  }
  _.each(g.children(), function(v) { dfs(v, 1); });
  return depths;
}

function sumWeights(g) {
  return _.reduce(g.edges(), function(acc, e) {
    return acc + g.edge(e).weight;
  }, 0);
}

function cleanup(g) {
  var graphLabel = g.graph();
  g.removeNode(graphLabel.nestingRoot);
  delete graphLabel.nestingRoot;
  _.each(g.edges(), function(e) {
    var edge = g.edge(e);
    if (edge.nestingEdge) {
      g.removeEdge(e);
    }
  });
}

},{"./lodash":10,"./util":29}],12:[function(require,module,exports){
"use strict";

var _ = require("./lodash"),
    util = require("./util");

module.exports = {
  run: run,
  undo: undo
};

/*
 * Breaks any long edges in the graph into short segments that span 1 layer
 * each. This operation is undoable with the denormalize function.
 *
 * Pre-conditions:
 *
 *    1. The input graph is a DAG.
 *    2. Each node in the graph has a "rank" property.
 *
 * Post-condition:
 *
 *    1. All edges in the graph have a length of 1.
 *    2. Dummy nodes are added where edges have been split into segments.
 *    3. The graph is augmented with a "dummyChains" attribute which contains
 *       the first dummy in each chain of dummy nodes produced.
 */
function run(g) {
  g.graph().dummyChains = [];
  _.each(g.edges(), function(edge) { normalizeEdge(g, edge); });
}

function normalizeEdge(g, e) {
  var v = e.v,
      vRank = g.node(v).rank,
      w = e.w,
      wRank = g.node(w).rank,
      name = e.name,
      edgeLabel = g.edge(e),
      labelRank = edgeLabel.labelRank;

  if (wRank === vRank + 1) return;

  g.removeEdge(e);

  var dummy, attrs, i;
  for (i = 0, ++vRank; vRank < wRank; ++i, ++vRank) {
    edgeLabel.points = [];
    attrs = {
      width: 0, height: 0,
      edgeLabel: edgeLabel, edgeObj: e,
      rank: vRank
    };
    dummy = util.addDummyNode(g, "edge", attrs, "_d");
    if (vRank === labelRank) {
      attrs.width = edgeLabel.width;
      attrs.height = edgeLabel.height;
      attrs.dummy = "edge-label";
      attrs.labelpos = edgeLabel.labelpos;
    }
    g.setEdge(v, dummy, { weight: edgeLabel.weight }, name);
    if (i === 0) {
      g.graph().dummyChains.push(dummy);
    }
    v = dummy;
  }

  g.setEdge(v, w, { weight: edgeLabel.weight }, name);
}

function undo(g) {
  _.each(g.graph().dummyChains, function(v) {
    var node = g.node(v),
        origLabel = node.edgeLabel,
        w;
    g.setEdge(node.edgeObj, origLabel);
    while (node.dummy) {
      w = g.successors(v)[0];
      g.removeNode(v);
      origLabel.points.push({ x: node.x, y: node.y });
      if (node.dummy === "edge-label") {
        origLabel.x = node.x;
        origLabel.y = node.y;
        origLabel.width = node.width;
        origLabel.height = node.height;
      }
      v = w;
      node = g.node(v);
    }
  });
}

},{"./lodash":10,"./util":29}],13:[function(require,module,exports){
var _ = require("../lodash");

module.exports = addSubgraphConstraints;

function addSubgraphConstraints(g, cg, vs) {
  var prev = {},
      rootPrev;

  _.each(vs, function(v) {
    var child = g.parent(v),
        parent,
        prevChild;
    while (child) {
      parent = g.parent(child);
      if (parent) {
        prevChild = prev[parent];
        prev[parent] = child;
      } else {
        prevChild = rootPrev;
        rootPrev = child;
      }
      if (prevChild && prevChild !== child) {
        cg.setEdge(prevChild, child);
        return;
      }
      child = parent;
    }
  });

  /*
  function dfs(v) {
    var children = v ? g.children(v) : g.children();
    if (children.length) {
      var min = Number.POSITIVE_INFINITY,
          subgraphs = [];
      _.each(children, function(child) {
        var childMin = dfs(child);
        if (g.children(child).length) {
          subgraphs.push({ v: child, order: childMin });
        }
        min = Math.min(min, childMin);
      });
      _.reduce(_.sortBy(subgraphs, "order"), function(prev, curr) {
        cg.setEdge(prev.v, curr.v);
        return curr;
      });
      return min;
    }
    return g.node(v).order;
  }
  dfs(undefined);
  */
}

},{"../lodash":10}],14:[function(require,module,exports){
var _ = require("../lodash");

module.exports = barycenter;

function barycenter(g, movable) {
  return _.map(movable, function(v) {
    var inV = g.inEdges(v);
    if (!inV.length) {
      return { v: v };
    } else {
      var result = _.reduce(inV, function(acc, e) {
        var edge = g.edge(e),
            nodeU = g.node(e.v);
        return {
          sum: acc.sum + (edge.weight * nodeU.order),
          weight: acc.weight + edge.weight
        };
      }, { sum: 0, weight: 0 });

      return {
        v: v,
        barycenter: result.sum / result.weight,
        weight: result.weight
      };
    }
  });
}


},{"../lodash":10}],15:[function(require,module,exports){
var _ = require("../lodash"),
    Graph = require("../graphlib").Graph;

module.exports = buildLayerGraph;

/*
 * Constructs a graph that can be used to sort a layer of nodes. The graph will
 * contain all base and subgraph nodes from the request layer in their original
 * hierarchy and any edges that are incident on these nodes and are of the type
 * requested by the "relationship" parameter.
 *
 * Nodes from the requested rank that do not have parents are assigned a root
 * node in the output graph, which is set in the root graph attribute. This
 * makes it easy to walk the hierarchy of movable nodes during ordering.
 *
 * Pre-conditions:
 *
 *    1. Input graph is a DAG
 *    2. Base nodes in the input graph have a rank attribute
 *    3. Subgraph nodes in the input graph has minRank and maxRank attributes
 *    4. Edges have an assigned weight
 *
 * Post-conditions:
 *
 *    1. Output graph has all nodes in the movable rank with preserved
 *       hierarchy.
 *    2. Root nodes in the movable layer are made children of the node
 *       indicated by the root attribute of the graph.
 *    3. Non-movable nodes incident on movable nodes, selected by the
 *       relationship parameter, are included in the graph (without hierarchy).
 *    4. Edges incident on movable nodes, selected by the relationship
 *       parameter, are added to the output graph.
 *    5. The weights for copied edges are aggregated as need, since the output
 *       graph is not a multi-graph.
 */
function buildLayerGraph(g, rank, relationship) {
  var root = createRootNode(g),
      result = new Graph({ compound: true }).setGraph({ root: root })
                  .setDefaultNodeLabel(function(v) { return g.node(v); });

  _.each(g.nodes(), function(v) {
    var node = g.node(v),
        parent = g.parent(v);

    if (node.rank === rank || node.minRank <= rank && rank <= node.maxRank) {
      result.setNode(v);
      result.setParent(v, parent || root);

      // This assumes we have only short edges!
      _.each(g[relationship](v), function(e) {
        var u = e.v === v ? e.w : e.v,
            edge = result.edge(u, v),
            weight = !_.isUndefined(edge) ? edge.weight : 0;
        result.setEdge(u, v, { weight: g.edge(e).weight + weight });
      });

      if (_.has(node, "minRank")) {
        result.setNode(v, {
          borderLeft: node.borderLeft[rank],
          borderRight: node.borderRight[rank]
        });
      }
    }
  });

  return result;
}

function createRootNode(g) {
  var v;
  while (g.hasNode((v = _.uniqueId("_root"))));
  return v;
}

},{"../graphlib":7,"../lodash":10}],16:[function(require,module,exports){
"use strict";

var _ = require("../lodash");

module.exports = crossCount;

/*
 * A function that takes a layering (an array of layers, each with an array of
 * ordererd nodes) and a graph and returns a weighted crossing count.
 *
 * Pre-conditions:
 *
 *    1. Input graph must be simple (not a multigraph), directed, and include
 *       only simple edges.
 *    2. Edges in the input graph must have assigned weights.
 *
 * Post-conditions:
 *
 *    1. The graph and layering matrix are left unchanged.
 *
 * This algorithm is derived from Barth, et al., "Bilayer Cross Counting."
 */
function crossCount(g, layering) {
  var cc = 0;
  for (var i = 1; i < layering.length; ++i) {
    cc += twoLayerCrossCount(g, layering[i-1], layering[i]);
  }
  return cc;
}

function twoLayerCrossCount(g, northLayer, southLayer) {
  // Sort all of the edges between the north and south layers by their position
  // in the north layer and then the south. Map these edges to the position of
  // their head in the south layer.
  var southPos = _.zipObject(southLayer,
                             _.map(southLayer, function (v, i) { return i; }));
  var southEntries = _.flatten(_.map(northLayer, function(v) {
    return _.chain(g.outEdges(v))
            .map(function(e) {
              return { pos: southPos[e.w], weight: g.edge(e).weight };
            })
            .sortBy("pos")
            .value();
  }), true);

  // Build the accumulator tree
  var firstIndex = 1;
  while (firstIndex < southLayer.length) firstIndex <<= 1;
  var treeSize = 2 * firstIndex - 1;
  firstIndex -= 1;
  var tree = _.map(new Array(treeSize), function() { return 0; });

  // Calculate the weighted crossings
  var cc = 0;
  _.each(southEntries.forEach(function(entry) {
    var index = entry.pos + firstIndex;
    tree[index] += entry.weight;
    var weightSum = 0;
    while (index > 0) {
      if (index % 2) {
        weightSum += tree[index + 1];
      }
      index = (index - 1) >> 1;
      tree[index] += entry.weight;
    }
    cc += entry.weight * weightSum;
  }));

  return cc;
}

},{"../lodash":10}],17:[function(require,module,exports){
"use strict";

var _ = require("../lodash"),
    initOrder = require("./init-order"),
    crossCount = require("./cross-count"),
    sortSubgraph = require("./sort-subgraph"),
    buildLayerGraph = require("./build-layer-graph"),
    addSubgraphConstraints = require("./add-subgraph-constraints"),
    Graph = require("../graphlib").Graph,
    util = require("../util");

module.exports = order;

/*
 * Applies heuristics to minimize edge crossings in the graph and sets the best
 * order solution as an order attribute on each node.
 *
 * Pre-conditions:
 *
 *    1. Graph must be DAG
 *    2. Graph nodes must be objects with a "rank" attribute
 *    3. Graph edges must have the "weight" attribute
 *
 * Post-conditions:
 *
 *    1. Graph nodes will have an "order" attribute based on the results of the
 *       algorithm.
 */
function order(g) {
  var maxRank = util.maxRank(g),
      downLayerGraphs = buildLayerGraphs(g, _.range(1, maxRank + 1), "inEdges"),
      upLayerGraphs = buildLayerGraphs(g, _.range(maxRank - 1, -1, -1), "outEdges");

  var layering = initOrder(g);
  assignOrder(g, layering);

  var bestCC = Number.POSITIVE_INFINITY,
      best;

  for (var i = 0, lastBest = 0; lastBest < 4; ++i, ++lastBest) {
    sweepLayerGraphs(i % 2 ? downLayerGraphs : upLayerGraphs, i % 4 >= 2);

    layering = util.buildLayerMatrix(g);
    var cc = crossCount(g, layering);
    if (cc < bestCC) {
      lastBest = 0;
      best = _.cloneDeep(layering);
      bestCC = cc;
    }
  }

  assignOrder(g, best);
}

function buildLayerGraphs(g, ranks, relationship) {
  return _.map(ranks, function(rank) {
    return buildLayerGraph(g, rank, relationship);
  });
}

function sweepLayerGraphs(layerGraphs, biasRight) {
  var cg = new Graph();
  _.each(layerGraphs, function(lg) {
    var root = lg.graph().root;
    var sorted = sortSubgraph(lg, root, cg, biasRight);
    _.each(sorted.vs, function(v, i) {
      lg.node(v).order = i;
    });
    addSubgraphConstraints(lg, cg, sorted.vs);
  });
}

function assignOrder(g, layering) {
  _.each(layering, function(layer) {
    _.each(layer, function(v, i) {
      g.node(v).order = i;
    });
  });
}

},{"../graphlib":7,"../lodash":10,"../util":29,"./add-subgraph-constraints":13,"./build-layer-graph":15,"./cross-count":16,"./init-order":18,"./sort-subgraph":20}],18:[function(require,module,exports){
"use strict";

var _ = require("../lodash");

module.exports = initOrder;

/*
 * Assigns an initial order value for each node by performing a DFS search
 * starting from nodes in the first rank. Nodes are assigned an order in their
 * rank as they are first visited.
 *
 * This approach comes from Gansner, et al., "A Technique for Drawing Directed
 * Graphs."
 *
 * Returns a layering matrix with an array per layer and each layer sorted by
 * the order of its nodes.
 */
function initOrder(g) {
  var visited = {},
      simpleNodes = _.filter(g.nodes(), function(v) {
        return !g.children(v).length;
      }),
      maxRank = _.max(_.map(simpleNodes, function(v) { return g.node(v).rank; })),
      layers = _.map(_.range(maxRank + 1), function() { return []; });

  function dfs(v) {
    if (_.has(visited, v)) return;
    visited[v] = true;
    var node = g.node(v);
    layers[node.rank].push(v);
    _.each(g.successors(v), dfs);
  }

  var orderedVs = _.sortBy(simpleNodes, function(v) { return g.node(v).rank; });
  _.each(orderedVs, dfs);

  return layers;
}

},{"../lodash":10}],19:[function(require,module,exports){
"use strict";

var _ = require("../lodash");

module.exports = resolveConflicts;

/*
 * Given a list of entries of the form {v, barycenter, weight} and a
 * constraint graph this function will resolve any conflicts between the
 * constraint graph and the barycenters for the entries. If the barycenters for
 * an entry would violate a constraint in the constraint graph then we coalesce
 * the nodes in the conflict into a new node that respects the contraint and
 * aggregates barycenter and weight information.
 *
 * This implementation is based on the description in Forster, "A Fast and
 * Simple Hueristic for Constrained Two-Level Crossing Reduction," thought it
 * differs in some specific details.
 *
 * Pre-conditions:
 *
 *    1. Each entry has the form {v, barycenter, weight}, or if the node has
 *       no barycenter, then {v}.
 *
 * Returns:
 *
 *    A new list of entries of the form {vs, i, barycenter, weight}. The list
 *    `vs` may either be a singleton or it may be an aggregation of nodes
 *    ordered such that they do not violate constraints from the constraint
 *    graph. The property `i` is the lowest original index of any of the
 *    elements in `vs`.
 */
function resolveConflicts(entries, cg) {
  var mappedEntries = {};
  _.each(entries, function(entry, i) {
    var tmp = mappedEntries[entry.v] = {
      indegree: 0,
      "in": [],
      out: [],
      vs: [entry.v],
      i: i
    };
    if (!_.isUndefined(entry.barycenter)) {
      tmp.barycenter = entry.barycenter;
      tmp.weight = entry.weight;
    }
  });

  _.each(cg.edges(), function(e) {
    var entryV = mappedEntries[e.v],
        entryW = mappedEntries[e.w];
    if (!_.isUndefined(entryV) && !_.isUndefined(entryW)) {
      entryW.indegree++;
      entryV.out.push(mappedEntries[e.w]);
    }
  });

  var sourceSet = _.filter(mappedEntries, function(entry) {
    return !entry.indegree;
  });

  return doResolveConflicts(sourceSet);
}

function doResolveConflicts(sourceSet) {
  var entries = [];

  function handleIn(vEntry) {
    return function(uEntry) {
      if (uEntry.merged) {
        return;
      }
      if (_.isUndefined(uEntry.barycenter) ||
          _.isUndefined(vEntry.barycenter) ||
          uEntry.barycenter >= vEntry.barycenter) {
        mergeEntries(vEntry, uEntry);
      }
    };
  }

  function handleOut(vEntry) {
    return function(wEntry) {
      wEntry["in"].push(vEntry);
      if (--wEntry.indegree === 0) {
        sourceSet.push(wEntry);
      }
    };
  }

  while (sourceSet.length) {
    var entry = sourceSet.pop();
    entries.push(entry);
    _.each(entry["in"].reverse(), handleIn(entry));
    _.each(entry.out, handleOut(entry));
  }

  return _.chain(entries)
          .filter(function(entry) { return !entry.merged; })
          .map(function(entry) {
            return _.pick(entry, ["vs", "i", "barycenter", "weight"]);
          })
          .value();
}

function mergeEntries(target, source) {
  var sum = 0,
      weight = 0;

  if (target.weight) {
    sum += target.barycenter * target.weight;
    weight += target.weight;
  }

  if (source.weight) {
    sum += source.barycenter * source.weight;
    weight += source.weight;
  }

  target.vs = source.vs.concat(target.vs);
  target.barycenter = sum / weight;
  target.weight = weight;
  target.i = Math.min(source.i, target.i);
  source.merged = true;
}

},{"../lodash":10}],20:[function(require,module,exports){
var _ = require("../lodash"),
    barycenter = require("./barycenter"),
    resolveConflicts = require("./resolve-conflicts"),
    sort = require("./sort");

module.exports = sortSubgraph;

function sortSubgraph(g, v, cg, biasRight) {
  var movable = g.children(v),
      node = g.node(v),
      bl = node ? node.borderLeft : undefined,
      br = node ? node.borderRight: undefined,
      subgraphs = {};

  if (bl) {
    movable = _.filter(movable, function(w) {
      return w !== bl && w !== br;
    });
  }

  var barycenters = barycenter(g, movable);
  _.each(barycenters, function(entry) {
    if (g.children(entry.v).length) {
      var subgraphResult = sortSubgraph(g, entry.v, cg, biasRight);
      subgraphs[entry.v] = subgraphResult;
      if (_.has(subgraphResult, "barycenter")) {
        mergeBarycenters(entry, subgraphResult);
      }
    }
  });

  var entries = resolveConflicts(barycenters, cg);
  expandSubgraphs(entries, subgraphs);

  var result = sort(entries, biasRight);

  if (bl) {
    result.vs = _.flatten([bl, result.vs, br], true);
    if (g.predecessors(bl).length) {
      var blPred = g.node(g.predecessors(bl)[0]),
          brPred = g.node(g.predecessors(br)[0]);
      if (!_.has(result, "barycenter")) {
        result.barycenter = 0;
        result.weight = 0;
      }
      result.barycenter = (result.barycenter * result.weight +
                           blPred.order + brPred.order) / (result.weight + 2);
      result.weight += 2;
    }
  }

  return result;
}

function expandSubgraphs(entries, subgraphs) {
  _.each(entries, function(entry) {
    entry.vs = _.flatten(entry.vs.map(function(v) {
      if (subgraphs[v]) {
        return subgraphs[v].vs;
      }
      return v;
    }), true);
  });
}

function mergeBarycenters(target, other) {
  if (!_.isUndefined(target.barycenter)) {
    target.barycenter = (target.barycenter * target.weight +
                         other.barycenter * other.weight) /
                        (target.weight + other.weight);
    target.weight += other.weight;
  } else {
    target.barycenter = other.barycenter;
    target.weight = other.weight;
  }
}

},{"../lodash":10,"./barycenter":14,"./resolve-conflicts":19,"./sort":21}],21:[function(require,module,exports){
var _ = require("../lodash"),
    util = require("../util");

module.exports = sort;

function sort(entries, biasRight) {
  var parts = util.partition(entries, function(entry) {
    return _.has(entry, "barycenter");
  });
  var sortable = parts.lhs,
      unsortable = _.sortBy(parts.rhs, function(entry) { return -entry.i; }),
      vs = [],
      sum = 0,
      weight = 0,
      vsIndex = 0;

  sortable.sort(compareWithBias(!!biasRight));

  vsIndex = consumeUnsortable(vs, unsortable, vsIndex);

  _.each(sortable, function (entry) {
    vsIndex += entry.vs.length;
    vs.push(entry.vs);
    sum += entry.barycenter * entry.weight;
    weight += entry.weight;
    vsIndex = consumeUnsortable(vs, unsortable, vsIndex);
  });

  var result = { vs: _.flatten(vs, true) };
  if (weight) {
    result.barycenter = sum / weight;
    result.weight = weight;
  }
  return result;
}

function consumeUnsortable(vs, unsortable, index) {
  var last;
  while (unsortable.length && (last = _.last(unsortable)).i <= index) {
    unsortable.pop();
    vs.push(last.vs);
    index++;
  }
  return index;
}

function compareWithBias(bias) {
  return function(entryV, entryW) {
    if (entryV.barycenter < entryW.barycenter) {
      return -1;
    } else if (entryV.barycenter > entryW.barycenter) {
      return 1;
    }

    return !bias ? entryV.i - entryW.i : entryW.i - entryV.i;
  };
}

},{"../lodash":10,"../util":29}],22:[function(require,module,exports){
var _ = require("./lodash");

module.exports = parentDummyChains;

function parentDummyChains(g) {
  var postorderNums = postorder(g);

  _.each(g.graph().dummyChains, function(v) {
    var node = g.node(v),
        edgeObj = node.edgeObj,
        pathData = findPath(g, postorderNums, edgeObj.v, edgeObj.w),
        path = pathData.path,
        lca = pathData.lca,
        pathIdx = 0,
        pathV = path[pathIdx],
        ascending = true;

    while (v !== edgeObj.w) {
      node = g.node(v);

      if (ascending) {
        while ((pathV = path[pathIdx]) !== lca &&
               g.node(pathV).maxRank < node.rank) {
          pathIdx++;
        }

        if (pathV === lca) {
          ascending = false;
        }
      }

      if (!ascending) {
        while (pathIdx < path.length - 1 &&
               g.node(pathV = path[pathIdx + 1]).minRank <= node.rank) {
          pathIdx++;
        }
        pathV = path[pathIdx];
      }

      g.setParent(v, pathV);
      v = g.successors(v)[0];
    }
  });
}

// Find a path from v to w through the lowest common ancestor (LCA). Return the
// full path and the LCA.
function findPath(g, postorderNums, v, w) {
  var vPath = [],
      wPath = [],
      low = Math.min(postorderNums[v].low, postorderNums[w].low),
      lim = Math.max(postorderNums[v].lim, postorderNums[w].lim),
      parent,
      lca;

  // Traverse up from v to find the LCA
  parent = v;
  do {
    parent = g.parent(parent);
    vPath.push(parent);
  } while (parent &&
           (postorderNums[parent].low > low || lim > postorderNums[parent].lim));
  lca = parent;

  // Traverse from w to LCA
  parent = w;
  while ((parent = g.parent(parent)) !== lca) {
    wPath.push(parent);
  }

  return { path: vPath.concat(wPath.reverse()), lca: lca };
}

function postorder(g) {
  var result = {},
      lim = 0;

  function dfs(v) {
    var low = lim;
    _.each(g.children(v), dfs);
    result[v] = { low: low, lim: lim++ };
  }
  _.each(g.children(), dfs);

  return result;
}

},{"./lodash":10}],23:[function(require,module,exports){
"use strict";

var _ = require("../lodash"),
    Graph = require("../graphlib").Graph,
    util = require("../util");

/*
 * This module provides coordinate assignment based on Brandes and Köpf, "Fast
 * and Simple Horizontal Coordinate Assignment."
 */

module.exports = {
  positionX: positionX,
  findType1Conflicts: findType1Conflicts,
  findType2Conflicts: findType2Conflicts,
  addConflict: addConflict,
  hasConflict: hasConflict,
  verticalAlignment: verticalAlignment,
  horizontalCompaction: horizontalCompaction,
  alignCoordinates: alignCoordinates,
  findSmallestWidthAlignment: findSmallestWidthAlignment,
  balance: balance
};

/*
 * Marks all edges in the graph with a type-1 conflict with the "type1Conflict"
 * property. A type-1 conflict is one where a non-inner segment crosses an
 * inner segment. An inner segment is an edge with both incident nodes marked
 * with the "dummy" property.
 *
 * This algorithm scans layer by layer, starting with the second, for type-1
 * conflicts between the current layer and the previous layer. For each layer
 * it scans the nodes from left to right until it reaches one that is incident
 * on an inner segment. It then scans predecessors to determine if they have
 * edges that cross that inner segment. At the end a final scan is done for all
 * nodes on the current rank to see if they cross the last visited inner
 * segment.
 *
 * This algorithm (safely) assumes that a dummy node will only be incident on a
 * single node in the layers being scanned.
 */
function findType1Conflicts(g, layering) {
  var conflicts = {};

  function visitLayer(prevLayer, layer) {
    var
      // last visited node in the previous layer that is incident on an inner
      // segment.
      k0 = 0,
      // Tracks the last node in this layer scanned for crossings with a type-1
      // segment.
      scanPos = 0,
      prevLayerLength = prevLayer.length,
      lastNode = _.last(layer);

    _.each(layer, function(v, i) {
      var w = findOtherInnerSegmentNode(g, v),
          k1 = w ? g.node(w).order : prevLayerLength;

      if (w || v === lastNode) {
        _.each(layer.slice(scanPos, i +1), function(scanNode) {
          _.each(g.predecessors(scanNode), function(u) {
            var uLabel = g.node(u),
                uPos = uLabel.order;
            if ((uPos < k0 || k1 < uPos) &&
                !(uLabel.dummy && g.node(scanNode).dummy)) {
              addConflict(conflicts, u, scanNode);
            }
          });
        });
        scanPos = i + 1;
        k0 = k1;
      }
    });

    return layer;
  }

  _.reduce(layering, visitLayer);
  return conflicts;
}

function findType2Conflicts(g, layering) {
  var conflicts = {};

  function scan(south, southPos, southEnd, prevNorthBorder, nextNorthBorder) {
    var v;
    _.each(_.range(southPos, southEnd), function(i) {
      v = south[i];
      if (g.node(v).dummy) {
        _.each(g.predecessors(v), function(u) {
          var uNode = g.node(u);
          if (uNode.dummy &&
              (uNode.order < prevNorthBorder || uNode.order > nextNorthBorder)) {
            addConflict(conflicts, u, v);
          }
        });
      }
    });
  }


  function visitLayer(north, south) {
    var prevNorthPos = -1,
        nextNorthPos,
        southPos = 0;

    _.each(south, function(v, southLookahead) {
      if (g.node(v).dummy === "border") {
        var predecessors = g.predecessors(v);
        if (predecessors.length) {
          nextNorthPos = g.node(predecessors[0]).order;
          scan(south, southPos, southLookahead, prevNorthPos, nextNorthPos);
          southPos = southLookahead;
          prevNorthPos = nextNorthPos;
        }
      }
      scan(south, southPos, south.length, nextNorthPos, north.length);
    });

    return south;
  }

  _.reduce(layering, visitLayer);
  return conflicts;
}

function findOtherInnerSegmentNode(g, v) {
  if (g.node(v).dummy) {
    return _.find(g.predecessors(v), function(u) {
      return g.node(u).dummy;
    });
  }
}

function addConflict(conflicts, v, w) {
  if (v > w) {
    var tmp = v;
    v = w;
    w = tmp;
  }

  var conflictsV = conflicts[v];
  if (!conflictsV) {
    conflicts[v] = conflictsV = {};
  }
  conflictsV[w] = true;
}

function hasConflict(conflicts, v, w) {
  if (v > w) {
    var tmp = v;
    v = w;
    w = tmp;
  }
  return _.has(conflicts[v], w);
}

/*
 * Try to align nodes into vertical "blocks" where possible. This algorithm
 * attempts to align a node with one of its median neighbors. If the edge
 * connecting a neighbor is a type-1 conflict then we ignore that possibility.
 * If a previous node has already formed a block with a node after the node
 * we're trying to form a block with, we also ignore that possibility - our
 * blocks would be split in that scenario.
 */
function verticalAlignment(g, layering, conflicts, neighborFn) {
  var root = {},
      align = {},
      pos = {};

  // We cache the position here based on the layering because the graph and
  // layering may be out of sync. The layering matrix is manipulated to
  // generate different extreme alignments.
  _.each(layering, function(layer) {
    _.each(layer, function(v, order) {
      root[v] = v;
      align[v] = v;
      pos[v] = order;
    });
  });

  _.each(layering, function(layer) {
    var prevIdx = -1;
    _.each(layer, function(v) {
      var ws = neighborFn(v);
      if (ws.length) {
        ws = _.sortBy(ws, function(w) { return pos[w]; });
        var mp = (ws.length - 1) / 2;
        for (var i = Math.floor(mp), il = Math.ceil(mp); i <= il; ++i) {
          var w = ws[i];
          if (align[v] === v &&
              prevIdx < pos[w] &&
              !hasConflict(conflicts, v, w)) {
            align[w] = v;
            align[v] = root[v] = root[w];
            prevIdx = pos[w];
          }
        }
      }
    });
  });

  return { root: root, align: align };
}

function horizontalCompaction(g, layering, root, align, reverseSep) {
  // This portion of the algorithm differs from BK due to a number of problems.
  // Instead of their algorithm we construct a new block graph and do two
  // sweeps. The first sweep places blocks with the smallest possible
  // coordinates. The second sweep removes unused space by moving blocks to the
  // greatest coordinates without violating separation.
  var xs = {},
      blockG = buildBlockGraph(g, layering, root, reverseSep);

  // First pass, assign smallest coordinates via DFS
  var visited = {};
  function pass1(v) {
    if (!_.has(visited, v)) {
      visited[v] = true;
      xs[v] = _.reduce(blockG.inEdges(v), function(max, e) {
        pass1(e.v);
        return Math.max(max, xs[e.v] + blockG.edge(e));
      }, 0);
    }
  }
  _.each(blockG.nodes(), pass1);

  var borderType = reverseSep ? "borderLeft" : "borderRight";
  function pass2(v) {
    if (visited[v] !== 2) {
      visited[v]++;
      var node = g.node(v);
      var min = _.reduce(blockG.outEdges(v), function(min, e) {
        pass2(e.w);
        return Math.min(min, xs[e.w] - blockG.edge(e));
      }, Number.POSITIVE_INFINITY);
      if (min !== Number.POSITIVE_INFINITY && node.borderType !== borderType) {
        xs[v] = Math.max(xs[v], min);
      }
    }
  }
  _.each(blockG.nodes(), pass2);

  // Assign x coordinates to all nodes
  _.each(align, function(v) {
    xs[v] = xs[root[v]];
  });

  return xs;
}


function buildBlockGraph(g, layering, root, reverseSep) {
  var blockGraph = new Graph(),
      graphLabel = g.graph(),
      sepFn = sep(graphLabel.nodesep, graphLabel.edgesep, reverseSep);

  _.each(layering, function(layer) {
    var u;
    _.each(layer, function(v) {
      var vRoot = root[v];
      blockGraph.setNode(vRoot);
      if (u) {
        var uRoot = root[u],
            prevMax = blockGraph.edge(uRoot, vRoot);
        blockGraph.setEdge(uRoot, vRoot, Math.max(sepFn(g, v, u), prevMax || 0));
      }
      u = v;
    });
  });

  return blockGraph;
}

/*
 * Returns the alignment that has the smallest width of the given alignments.
 */
function findSmallestWidthAlignment(g, xss) {
  return _.min(xss, function(xs) {
    var min = _.min(xs, function(x, v) { return x - width(g, v) / 2; }),
        max = _.max(xs, function(x, v) { return x + width(g, v) / 2; });
    return max - min;
  });
}

/*
 * Align the coordinates of each of the layout alignments such that
 * left-biased alignments have their minimum coordinate at the same point as
 * the minimum coordinate of the smallest width alignment and right-biased
 * alignments have their maximum coordinate at the same point as the maximum
 * coordinate of the smallest width alignment.
 */
function alignCoordinates(xss, alignTo) {
  var alignToMin = _.min(alignTo),
      alignToMax = _.max(alignTo);

  _.each(["u", "d"], function(vert) {
    _.each(["l", "r"], function(horiz) {
      var alignment = vert + horiz,
          xs = xss[alignment],
          delta;
      if (xs === alignTo) return;

      delta = horiz === "l" ? alignToMin - _.min(xs) : alignToMax - _.max(xs);

      if (delta) {
        xss[alignment] = _.mapValues(xs, function(x) { return x + delta; });
      }
    });
  });
}

function balance(xss, align) {
  return _.mapValues(xss.ul, function(ignore, v) {
    if (align) {
      return xss[align.toLowerCase()][v];
    } else {
      var xs = _.sortBy(_.pluck(xss, v));
      return (xs[1] + xs[2]) / 2;
    }
  });
}

function positionX(g) {
  var layering = util.buildLayerMatrix(g),
      conflicts = _.merge(findType1Conflicts(g, layering),
                          findType2Conflicts(g, layering));

  var xss = {},
      adjustedLayering;
  _.each(["u", "d"], function(vert) {
    adjustedLayering = vert === "u" ? layering : _.values(layering).reverse();
    _.each(["l", "r"], function(horiz) {
      if (horiz === "r") {
        adjustedLayering = _.map(adjustedLayering, function(inner) {
          return _.values(inner).reverse();
        });
      }

      var neighborFn = _.bind(vert === "u" ? g.predecessors : g.successors, g);
      var align = verticalAlignment(g, adjustedLayering, conflicts, neighborFn);
      var xs = horizontalCompaction(g, adjustedLayering,
                                    align.root, align.align,
                                    horiz === "r");
      if (horiz === "r") {
        xs = _.mapValues(xs, function(x) { return -x; });
      }
      xss[vert + horiz] = xs;
    });
  });

  var smallestWidth = findSmallestWidthAlignment(g, xss);
  alignCoordinates(xss, smallestWidth);
  return balance(xss, g.graph().align);
}

function sep(nodeSep, edgeSep, reverseSep) {
  return function(g, v, w) {
    var vLabel = g.node(v),
        wLabel = g.node(w),
        sum = 0,
        delta;

    sum += vLabel.width / 2;
    if (_.has(vLabel, "labelpos")) {
      switch (vLabel.labelpos.toLowerCase()) {
        case "l": delta = -vLabel.width / 2; break;
        case "r": delta = vLabel.width / 2; break;
      }
    }
    if (delta) {
      sum += reverseSep ? delta : -delta;
    }
    delta = 0;

    sum += (vLabel.dummy ? edgeSep : nodeSep) / 2;
    sum += (wLabel.dummy ? edgeSep : nodeSep) / 2;

    sum += wLabel.width / 2;
    if (_.has(wLabel, "labelpos")) {
      switch (wLabel.labelpos.toLowerCase()) {
        case "l": delta = wLabel.width / 2; break;
        case "r": delta = -wLabel.width / 2; break;
      }
    }
    if (delta) {
      sum += reverseSep ? delta : -delta;
    }
    delta = 0;

    return sum;
  };
}

function width(g, v) {
  return g.node(v).width;
}

},{"../graphlib":7,"../lodash":10,"../util":29}],24:[function(require,module,exports){
"use strict";

var _ = require("../lodash"),
    util = require("../util"),
    positionX = require("./bk").positionX;

module.exports = position;

function position(g) {
  g = util.asNonCompoundGraph(g);

  positionY(g);
  _.each(positionX(g), function(x, v) {
    g.node(v).x = x;
  });
}

function positionY(g) {
  var layering = util.buildLayerMatrix(g),
      rankSep = g.graph().ranksep,
      prevY = 0;
  _.each(layering, function(layer) {
    var maxHeight = _.max(_.map(layer, function(v) { return g.node(v).height; }));
    _.each(layer, function(v) {
      g.node(v).y = prevY + maxHeight / 2;
    });
    prevY += maxHeight + rankSep;
  });
}


},{"../lodash":10,"../util":29,"./bk":23}],25:[function(require,module,exports){
"use strict";

var _ = require("../lodash"),
    Graph = require("../graphlib").Graph,
    slack = require("./util").slack;

module.exports = feasibleTree;

/*
 * Constructs a spanning tree with tight edges and adjusted the input node's
 * ranks to achieve this. A tight edge is one that is has a length that matches
 * its "minlen" attribute.
 *
 * The basic structure for this function is derived from Gansner, et al., "A
 * Technique for Drawing Directed Graphs."
 *
 * Pre-conditions:
 *
 *    1. Graph must be a DAG.
 *    2. Graph must be connected.
 *    3. Graph must have at least one node.
 *    5. Graph nodes must have been previously assigned a "rank" property that
 *       respects the "minlen" property of incident edges.
 *    6. Graph edges must have a "minlen" property.
 *
 * Post-conditions:
 *
 *    - Graph nodes will have their rank adjusted to ensure that all edges are
 *      tight.
 *
 * Returns a tree (undirected graph) that is constructed using only "tight"
 * edges.
 */
function feasibleTree(g) {
  var t = new Graph({ directed: false });

  // Choose arbitrary node from which to start our tree
  var start = g.nodes()[0],
      size = g.nodeCount();
  t.setNode(start, {});

  var edge, delta;
  while (tightTree(t, g) < size) {
    edge = findMinSlackEdge(t, g);
    delta = t.hasNode(edge.v) ? slack(g, edge) : -slack(g, edge);
    shiftRanks(t, g, delta);
  }

  return t;
}

/*
 * Finds a maximal tree of tight edges and returns the number of nodes in the
 * tree.
 */
function tightTree(t, g) {
  function dfs(v) {
    _.each(g.nodeEdges(v), function(e) {
      var edgeV = e.v,
          w = (v === edgeV) ? e.w : edgeV;
      if (!t.hasNode(w) && !slack(g, e)) {
        t.setNode(w, {});
        t.setEdge(v, w, {});
        dfs(w);
      }
    });
  }

  _.each(t.nodes(), dfs);
  return t.nodeCount();
}

/*
 * Finds the edge with the smallest slack that is incident on tree and returns
 * it.
 */
function findMinSlackEdge(t, g) {
  return _.min(g.edges(), function(e) {
    if (t.hasNode(e.v) !== t.hasNode(e.w)) {
      return slack(g, e);
    }
  });
}

function shiftRanks(t, g, delta) {
  _.each(t.nodes(), function(v) {
    g.node(v).rank += delta;
  });
}

},{"../graphlib":7,"../lodash":10,"./util":28}],26:[function(require,module,exports){
"use strict";

var rankUtil = require("./util"),
    longestPath = rankUtil.longestPath,
    feasibleTree = require("./feasible-tree"),
    networkSimplex = require("./network-simplex");

module.exports = rank;

/*
 * Assigns a rank to each node in the input graph that respects the "minlen"
 * constraint specified on edges between nodes.
 *
 * This basic structure is derived from Gansner, et al., "A Technique for
 * Drawing Directed Graphs."
 *
 * Pre-conditions:
 *
 *    1. Graph must be a connected DAG
 *    2. Graph nodes must be objects
 *    3. Graph edges must have "weight" and "minlen" attributes
 *
 * Post-conditions:
 *
 *    1. Graph nodes will have a "rank" attribute based on the results of the
 *       algorithm. Ranks can start at any index (including negative), we'll
 *       fix them up later.
 */
function rank(g) {
  switch(g.graph().ranker) {
    case "network-simplex": networkSimplexRanker(g); break;
    case "tight-tree": tightTreeRanker(g); break;
    case "longest-path": longestPathRanker(g); break;
    default: networkSimplexRanker(g);
  }
}

// A fast and simple ranker, but results are far from optimal.
var longestPathRanker = longestPath;

function tightTreeRanker(g) {
  longestPath(g);
  feasibleTree(g);
}

function networkSimplexRanker(g) {
  networkSimplex(g);
}

},{"./feasible-tree":25,"./network-simplex":27,"./util":28}],27:[function(require,module,exports){
"use strict";

var _ = require("../lodash"),
    feasibleTree = require("./feasible-tree"),
    slack = require("./util").slack,
    initRank = require("./util").longestPath,
    preorder = require("../graphlib").alg.preorder,
    postorder = require("../graphlib").alg.postorder,
    simplify = require("../util").simplify;

module.exports = networkSimplex;

// Expose some internals for testing purposes
networkSimplex.initLowLimValues = initLowLimValues;
networkSimplex.initCutValues = initCutValues;
networkSimplex.calcCutValue = calcCutValue;
networkSimplex.leaveEdge = leaveEdge;
networkSimplex.enterEdge = enterEdge;
networkSimplex.exchangeEdges = exchangeEdges;

/*
 * The network simplex algorithm assigns ranks to each node in the input graph
 * and iteratively improves the ranking to reduce the length of edges.
 *
 * Preconditions:
 *
 *    1. The input graph must be a DAG.
 *    2. All nodes in the graph must have an object value.
 *    3. All edges in the graph must have "minlen" and "weight" attributes.
 *
 * Postconditions:
 *
 *    1. All nodes in the graph will have an assigned "rank" attribute that has
 *       been optimized by the network simplex algorithm. Ranks start at 0.
 *
 *
 * A rough sketch of the algorithm is as follows:
 *
 *    1. Assign initial ranks to each node. We use the longest path algorithm,
 *       which assigns ranks to the lowest position possible. In general this
 *       leads to very wide bottom ranks and unnecessarily long edges.
 *    2. Construct a feasible tight tree. A tight tree is one such that all
 *       edges in the tree have no slack (difference between length of edge
 *       and minlen for the edge). This by itself greatly improves the assigned
 *       rankings by shorting edges.
 *    3. Iteratively find edges that have negative cut values. Generally a
 *       negative cut value indicates that the edge could be removed and a new
 *       tree edge could be added to produce a more compact graph.
 *
 * Much of the algorithms here are derived from Gansner, et al., "A Technique
 * for Drawing Directed Graphs." The structure of the file roughly follows the
 * structure of the overall algorithm.
 */
function networkSimplex(g) {
  g = simplify(g);
  initRank(g);
  var t = feasibleTree(g);
  initLowLimValues(t);
  initCutValues(t, g);

  var e, f;
  while ((e = leaveEdge(t))) {
    f = enterEdge(t, g, e);
    exchangeEdges(t, g, e, f);
  }
}

/*
 * Initializes cut values for all edges in the tree.
 */
function initCutValues(t, g) {
  var vs = postorder(t, t.nodes());
  vs = vs.slice(0, vs.length - 1);
  _.each(vs, function(v) {
    assignCutValue(t, g, v);
  });
}

function assignCutValue(t, g, child) {
  var childLab = t.node(child),
      parent = childLab.parent;
  t.edge(child, parent).cutvalue = calcCutValue(t, g, child);
}

/*
 * Given the tight tree, its graph, and a child in the graph calculate and
 * return the cut value for the edge between the child and its parent.
 */
function calcCutValue(t, g, child) {
  var childLab = t.node(child),
      parent = childLab.parent,
      // True if the child is on the tail end of the edge in the directed graph
      childIsTail = true,
      // The graph's view of the tree edge we're inspecting
      graphEdge = g.edge(child, parent),
      // The accumulated cut value for the edge between this node and its parent
      cutValue = 0;

  if (!graphEdge) {
    childIsTail = false;
    graphEdge = g.edge(parent, child);
  }

  cutValue = graphEdge.weight;

  _.each(g.nodeEdges(child), function(e) {
    var isOutEdge = e.v === child,
        other = isOutEdge ? e.w : e.v;

    if (other !== parent) {
      var pointsToHead = isOutEdge === childIsTail,
          otherWeight = g.edge(e).weight;

      cutValue += pointsToHead ? otherWeight : -otherWeight;
      if (isTreeEdge(t, child, other)) {
        var otherCutValue = t.edge(child, other).cutvalue;
        cutValue += pointsToHead ? -otherCutValue : otherCutValue;
      }
    }
  });

  return cutValue;
}

function initLowLimValues(tree, root) {
  if (arguments.length < 2) {
    root = tree.nodes()[0];
  }
  dfsAssignLowLim(tree, {}, 1, root);
}

function dfsAssignLowLim(tree, visited, nextLim, v, parent) {
  var low = nextLim,
      label = tree.node(v);

  visited[v] = true;
  _.each(tree.neighbors(v), function(w) {
    if (!_.has(visited, w)) {
      nextLim = dfsAssignLowLim(tree, visited, nextLim, w, v);
    }
  });

  label.low = low;
  label.lim = nextLim++;
  if (parent) {
    label.parent = parent;
  } else {
    // TODO should be able to remove this when we incrementally update low lim
    delete label.parent;
  }

  return nextLim;
}

function leaveEdge(tree) {
  return _.find(tree.edges(), function(e) {
    return tree.edge(e).cutvalue < 0;
  });
}

function enterEdge(t, g, edge) {
  var v = edge.v,
      w = edge.w;

  // For the rest of this function we assume that v is the tail and w is the
  // head, so if we don't have this edge in the graph we should flip it to
  // match the correct orientation.
  if (!g.hasEdge(v, w)) {
    v = edge.w;
    w = edge.v;
  }

  var vLabel = t.node(v),
      wLabel = t.node(w),
      tailLabel = vLabel,
      flip = false;

  // If the root is in the tail of the edge then we need to flip the logic that
  // checks for the head and tail nodes in the candidates function below.
  if (vLabel.lim > wLabel.lim) {
    tailLabel = wLabel;
    flip = true;
  }

  var candidates = _.filter(g.edges(), function(edge) {
    return flip === isDescendant(t, t.node(edge.v), tailLabel) &&
           flip !== isDescendant(t, t.node(edge.w), tailLabel);
  });

  return _.min(candidates, function(edge) { return slack(g, edge); });
}

function exchangeEdges(t, g, e, f) {
  var v = e.v,
      w = e.w;
  t.removeEdge(v, w);
  t.setEdge(f.v, f.w, {});
  initLowLimValues(t);
  initCutValues(t, g);
  updateRanks(t, g);
}

function updateRanks(t, g) {
  var root = _.find(t.nodes(), function(v) { return !g.node(v).parent; }),
      vs = preorder(t, root);
  vs = vs.slice(1);
  _.each(vs, function(v) {
    var parent = t.node(v).parent,
        edge = g.edge(v, parent),
        flipped = false;

    if (!edge) {
      edge = g.edge(parent, v);
      flipped = true;
    }

    g.node(v).rank = g.node(parent).rank + (flipped ? edge.minlen : -edge.minlen);
  });
}

/*
 * Returns true if the edge is in the tree.
 */
function isTreeEdge(tree, u, v) {
  return tree.hasEdge(u, v);
}

/*
 * Returns true if the specified node is descendant of the root node per the
 * assigned low and lim attributes in the tree.
 */
function isDescendant(tree, vLabel, rootLabel) {
  return rootLabel.low <= vLabel.lim && vLabel.lim <= rootLabel.lim;
}

},{"../graphlib":7,"../lodash":10,"../util":29,"./feasible-tree":25,"./util":28}],28:[function(require,module,exports){
"use strict";

var _ = require("../lodash");

module.exports = {
  longestPath: longestPath,
  slack: slack
};

/*
 * Initializes ranks for the input graph using the longest path algorithm. This
 * algorithm scales well and is fast in practice, it yields rather poor
 * solutions. Nodes are pushed to the lowest layer possible, leaving the bottom
 * ranks wide and leaving edges longer than necessary. However, due to its
 * speed, this algorithm is good for getting an initial ranking that can be fed
 * into other algorithms.
 *
 * This algorithm does not normalize layers because it will be used by other
 * algorithms in most cases. If using this algorithm directly, be sure to
 * run normalize at the end.
 *
 * Pre-conditions:
 *
 *    1. Input graph is a DAG.
 *    2. Input graph node labels can be assigned properties.
 *
 * Post-conditions:
 *
 *    1. Each node will be assign an (unnormalized) "rank" property.
 */
function longestPath(g) {
  var visited = {};

  function dfs(v) {
    var label = g.node(v);
    if (_.has(visited, v)) {
      return label.rank;
    }
    visited[v] = true;

    var rank = _.min(_.map(g.outEdges(v), function(e) {
      return dfs(e.w) - g.edge(e).minlen;
    }));

    if (rank === Number.POSITIVE_INFINITY) {
      rank = 0;
    }

    return (label.rank = rank);
  }

  _.each(g.sources(), dfs);
}

/*
 * Returns the amount of slack for the given edge. The slack is defined as the
 * difference between the length of the edge and its minimum length.
 */
function slack(g, e) {
  return g.node(e.w).rank - g.node(e.v).rank - g.edge(e).minlen;
}

},{"../lodash":10}],29:[function(require,module,exports){
"use strict";

var _ = require("./lodash"),
    Graph = require("./graphlib").Graph;

module.exports = {
  addDummyNode: addDummyNode,
  simplify: simplify,
  asNonCompoundGraph: asNonCompoundGraph,
  successorWeights: successorWeights,
  predecessorWeights: predecessorWeights,
  intersectRect: intersectRect,
  buildLayerMatrix: buildLayerMatrix,
  normalizeRanks: normalizeRanks,
  removeEmptyRanks: removeEmptyRanks,
  addBorderNode: addBorderNode,
  maxRank: maxRank,
  partition: partition,
  time: time,
  notime: notime
};

/*
 * Adds a dummy node to the graph and return v.
 */
function addDummyNode(g, type, attrs, name) {
  var v;
  do {
    v = _.uniqueId(name);
  } while (g.hasNode(v));

  attrs.dummy = type;
  g.setNode(v, attrs);
  return v;
}

/*
 * Returns a new graph with only simple edges. Handles aggregation of data
 * associated with multi-edges.
 */
function simplify(g) {
  var simplified = new Graph().setGraph(g.graph());
  _.each(g.nodes(), function(v) { simplified.setNode(v, g.node(v)); });
  _.each(g.edges(), function(e) {
    var simpleLabel = simplified.edge(e.v, e.w) || { weight: 0, minlen: 1 },
        label = g.edge(e);
    simplified.setEdge(e.v, e.w, {
      weight: simpleLabel.weight + label.weight,
      minlen: Math.max(simpleLabel.minlen, label.minlen)
    });
  });
  return simplified;
}

function asNonCompoundGraph(g) {
  var simplified = new Graph({ multigraph: g.isMultigraph() }).setGraph(g.graph());
  _.each(g.nodes(), function(v) {
    if (!g.children(v).length) {
      simplified.setNode(v, g.node(v));
    }
  });
  _.each(g.edges(), function(e) {
    simplified.setEdge(e, g.edge(e));
  });
  return simplified;
}

function successorWeights(g) {
  var weightMap = _.map(g.nodes(), function(v) {
    var sucs = {};
    _.each(g.outEdges(v), function(e) {
      sucs[e.w] = (sucs[e.w] || 0) + g.edge(e).weight;
    });
    return sucs;
  });
  return _.zipObject(g.nodes(), weightMap);
}

function predecessorWeights(g) {
  var weightMap = _.map(g.nodes(), function(v) {
    var preds = {};
    _.each(g.inEdges(v), function(e) {
      preds[e.v] = (preds[e.v] || 0) + g.edge(e).weight;
    });
    return preds;
  });
  return _.zipObject(g.nodes(), weightMap);
}

/*
 * Finds where a line starting at point ({x, y}) would intersect a rectangle
 * ({x, y, width, height}) if it were pointing at the rectangle's center.
 */
function intersectRect(rect, point) {
  var x = rect.x;
  var y = rect.y;

  // Rectangle intersection algorithm from:
  // http://math.stackexchange.com/questions/108113/find-edge-between-two-boxes
  var dx = point.x - x;
  var dy = point.y - y;
  var w = rect.width / 2;
  var h = rect.height / 2;

  if (!dx && !dy) {
    throw new Error("Not possible to find intersection inside of the rectangle");
  }

  var sx, sy;
  if (Math.abs(dy) * w > Math.abs(dx) * h) {
    // Intersection is top or bottom of rect.
    if (dy < 0) {
      h = -h;
    }
    sx = h * dx / dy;
    sy = h;
  } else {
    // Intersection is left or right of rect.
    if (dx < 0) {
      w = -w;
    }
    sx = w;
    sy = w * dy / dx;
  }

  return { x: x + sx, y: y + sy };
}

/*
 * Given a DAG with each node assigned "rank" and "order" properties, this
 * function will produce a matrix with the ids of each node.
 */
function buildLayerMatrix(g) {
  var layering = _.map(_.range(maxRank(g) + 1), function() { return []; });
  _.each(g.nodes(), function(v) {
    var node = g.node(v),
        rank = node.rank;
    if (!_.isUndefined(rank)) {
      layering[rank][node.order] = v;
    }
  });
  return layering;
}

/*
 * Adjusts the ranks for all nodes in the graph such that all nodes v have
 * rank(v) >= 0 and at least one node w has rank(w) = 0.
 */
function normalizeRanks(g) {
  var min = _.min(_.map(g.nodes(), function(v) { return g.node(v).rank; }));
  _.each(g.nodes(), function(v) {
    var node = g.node(v);
    if (_.has(node, "rank")) {
      node.rank -= min;
    }
  });
}

function removeEmptyRanks(g) {
  // Ranks may not start at 0, so we need to offset them
  var offset = _.min(_.map(g.nodes(), function(v) { return g.node(v).rank; }));

  var layers = [];
  _.each(g.nodes(), function(v) {
    var rank = g.node(v).rank - offset;
    if (!layers[rank]) {
      layers[rank] = [];
    }
    layers[rank].push(v);
  });

  var delta = 0,
      nodeRankFactor = g.graph().nodeRankFactor;
  _.each(layers, function(vs, i) {
    if (_.isUndefined(vs) && i % nodeRankFactor !== 0) {
      --delta;
    } else if (delta) {
      _.each(vs, function(v) { g.node(v).rank += delta; });
    }
  });
}

function addBorderNode(g, prefix, rank, order) {
  var node = {
    width: 0,
    height: 0
  };
  if (arguments.length >= 4) {
    node.rank = rank;
    node.order = order;
  }
  return addDummyNode(g, "border", node, prefix);
}

function maxRank(g) {
  return _.max(_.map(g.nodes(), function(v) {
    var rank = g.node(v).rank;
    if (!_.isUndefined(rank)) {
      return rank;
    }
  }));
}

/*
 * Partition a collection into two groups: `lhs` and `rhs`. If the supplied
 * function returns true for an entry it goes into `lhs`. Otherwise it goes
 * into `rhs.
 */
function partition(collection, fn) {
  var result = { lhs: [], rhs: [] };
  _.each(collection, function(value) {
    if (fn(value)) {
      result.lhs.push(value);
    } else {
      result.rhs.push(value);
    }
  });
  return result;
}

/*
 * Returns a new function that wraps `fn` with a timer. The wrapper logs the
 * time it takes to execute the function.
 */
function time(name, fn) {
  var start = _.now();
  try {
    return fn();
  } finally {
    console.log(name + " time: " + (_.now() - start) + "ms");
  }
}

function notime(name, fn) {
  return fn();
}

},{"./graphlib":7,"./lodash":10}],30:[function(require,module,exports){
module.exports = "0.7.4";

},{}]},{},[1])(1)
});




© 2015 - 2024 Weber Informatics LLC | Privacy Policy