rhino1.7.6.testsrc.tests.ecma.GlobalObject.15.1.2.5-3.js Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rhino Show documentation
Show all versions of rhino Show documentation
Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically
embedded into Java applications to provide scripting to end users.
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
gTestfile = '15.1.2.5-3.js';
/**
File Name: 15.1.2.5-3.js
ECMA Section: 15.1.2.5 Function properties of the global object
unescape( string )
Description:
This tests the cases where one of the four characters following "%u" is
not a hexidecimal character, or one of the two characters following "%"
or "%u" is not a hexidecimal character.
The unescape function computes a new version of a string value in which
each escape sequences of the sort that might be introduced by the escape
function is replaced with the character that it represents.
When the unescape function is called with one argument string, the
following steps are taken:
1. Call ToString(string).
2. Compute the number of characters in Result(1).
3. Let R be the empty string.
4. Let k be 0.
5. If k equals Result(2), return R.
6. Let c be the character at position k within Result(1).
7. If c is not %, go to step 18.
8. If k is greater than Result(2)-6, go to step 14.
9. If the character at position k+1 within result(1) is not u, go to step
14.
10. If the four characters at positions k+2, k+3, k+4, and k+5 within
Result(1) are not all hexadecimal digits, go to step 14.
11. Let c be the character whose Unicode encoding is the integer represented
by the four hexadecimal digits at positions k+2, k+3, k+4, and k+5
within Result(1).
12. Increase k by 5.
13. Go to step 18.
14. If k is greater than Result(2)-3, go to step 18.
15. If the two characters at positions k+1 and k+2 within Result(1) are not
both hexadecimal digits, go to step 18.
16. Let c be the character whose Unicode encoding is the integer represented
by two zeroes plus the two hexadecimal digits at positions k+1 and k+2
within Result(1).
17. Increase k by 2.
18. Let R be a new string value computed by concatenating the previous value
of R and c.
19. Increase k by 1.
20. Go to step 5.
Author: [email protected]
Date: 28 october 1997
*/
var SECTION = "15.1.2.5-3";
var VERSION = "ECMA_1";
startTest();
var TITLE = "unescape(string)";
writeHeaderToLog( SECTION + " "+ TITLE);
for ( var CHARCODE = 0, NONHEXCHARCODE = 0; CHARCODE < 256; CHARCODE++, NONHEXCHARCODE++ ) {
NONHEXCHARCODE = getNextNonHexCharCode( NONHEXCHARCODE );
new TestCase( SECTION,
"unescape( %"+ (ToHexString(CHARCODE)).substring(0,1) +
String.fromCharCode( NONHEXCHARCODE ) +" )" +
"[where last character is String.fromCharCode("+NONHEXCHARCODE+")]",
"%"+(ToHexString(CHARCODE)).substring(0,1)+
String.fromCharCode( NONHEXCHARCODE ),
unescape( "%" + (ToHexString(CHARCODE)).substring(0,1)+
String.fromCharCode( NONHEXCHARCODE ) ) );
}
for ( var CHARCODE = 0, NONHEXCHARCODE = 0; CHARCODE < 256; CHARCODE++, NONHEXCHARCODE++ ) {
NONHEXCHARCODE = getNextNonHexCharCode( NONHEXCHARCODE );
new TestCase( SECTION,
"unescape( %u"+ (ToHexString(CHARCODE)).substring(0,1) +
String.fromCharCode( NONHEXCHARCODE ) +" )" +
"[where last character is String.fromCharCode("+NONHEXCHARCODE+")]",
"%u"+(ToHexString(CHARCODE)).substring(0,1)+
String.fromCharCode( NONHEXCHARCODE ),
unescape( "%u" + (ToHexString(CHARCODE)).substring(0,1)+
String.fromCharCode( NONHEXCHARCODE ) ) );
}
for ( var CHARCODE = 0, NONHEXCHARCODE = 0 ; CHARCODE < 65536; CHARCODE+= 54321, NONHEXCHARCODE++ ) {
NONHEXCHARCODE = getNextNonHexCharCode( NONHEXCHARCODE );
new TestCase( SECTION,
"unescape( %u"+ (ToUnicodeString(CHARCODE)).substring(0,3) +
String.fromCharCode( NONHEXCHARCODE ) +" )" +
"[where last character is String.fromCharCode("+NONHEXCHARCODE+")]",
String.fromCharCode(eval("0x"+ (ToUnicodeString(CHARCODE)).substring(0,2))) +
(ToUnicodeString(CHARCODE)).substring(2,3) +
String.fromCharCode( NONHEXCHARCODE ),
unescape( "%" + (ToUnicodeString(CHARCODE)).substring(0,3)+
String.fromCharCode( NONHEXCHARCODE ) ) );
}
test();
function getNextNonHexCharCode( n ) {
for ( ; n < Math.pow(2,16); n++ ) {
if ( ( n == 43 || n == 45 || n == 46 || n == 47 ||
(n >= 71 && n <= 90) || (n >= 103 && n <= 122) ||
n == 64 || n == 95 ) ) {
break;
} else {
n = ( n > 122 ) ? 0 : n;
}
}
return n;
}
function ToUnicodeString( n ) {
var string = ToHexString(n);
for ( var PAD = (4 - string.length ); PAD > 0; PAD-- ) {
string = "0" + string;
}
return string;
}
function ToHexString( n ) {
var hex = new Array();
for ( var mag = 1; Math.pow(16,mag) <= n ; mag++ ) {
;
}
for ( index = 0, mag -= 1; mag > 0; index++, mag-- ) {
hex[index] = Math.floor( n / Math.pow(16,mag) );
n -= Math.pow(16,mag) * Math.floor( n/Math.pow(16,mag) );
}
hex[hex.length] = n % 16;
var string ="";
for ( var index = 0 ; index < hex.length ; index++ ) {
switch ( hex[index] ) {
case 10:
string += "A";
break;
case 11:
string += "B";
break;
case 12:
string += "C";
break;
case 13:
string += "D";
break;
case 14:
string += "E";
break;
case 15:
string += "F";
break;
default:
string += hex[index];
}
}
if ( string.length == 1 ) {
string = "0" + string;
}
return string;
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy