rhino1.7.7.testsrc.tests.ecma.Expressions.11.5.3.js Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rhino Show documentation
Show all versions of rhino Show documentation
Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically
embedded into Java applications to provide scripting to end users.
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
gTestfile = '11.5.3.js';
/**
File Name: 11.5.3.js
ECMA Section: 11.5.3 Applying the % operator
Description:
The binary % operator is said to yield the remainder of its operands from
an implied division; the left operand is the dividend and the right operand
is the divisor. In C and C++, the remainder operator accepts only integral
operands, but in ECMAScript, it also accepts floating-point operands.
The result of a floating-point remainder operation as computed by the %
operator is not the same as the "remainder" operation defined by IEEE 754.
The IEEE 754 "remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous
to that of the usual integer remainder operator. Instead the ECMAScript
language defines % on floating-point operations to behave in a manner
analogous to that of the Java integer remainder operator; this may be
compared with the C library function fmod.
The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
If either operand is NaN, the result is NaN.
The sign of the result equals the sign of the dividend.
If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
possible without exceeding the magnitude of the true mathematical quotient of n and d.
Author: [email protected]
Date: 12 november 1997
*/
var SECTION = "11.5.3";
var VERSION = "ECMA_1";
var BUGNUMBER="111202";
startTest();
writeHeaderToLog( SECTION + " Applying the % operator");
// if either operand is NaN, the result is NaN.
new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
// dividend is an infinity
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
// divisor is 0
new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
// If the dividend is finite and the divisor is an infinity, the result equals the dividend.
new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
// possible without exceeding the magnitude of the true mathematical quotient of n and d.
test();
© 2015 - 2024 Weber Informatics LLC | Privacy Policy