All Downloads are FREE. Search and download functionalities are using the official Maven repository.

rhino1.7.7.testsrc.tests.ecma.GlobalObject.15.1.2.2-1.js Maven / Gradle / Ivy

Go to download

Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically embedded into Java applications to provide scripting to end users.

There is a newer version: 1.7.15
Show newest version
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

gTestfile = '15.1.2.2-1.js';

/**
   File Name:          15.1.2.2-1.js
   ECMA Section:       15.1.2.2 Function properties of the global object
   parseInt( string, radix )

   Description:

   The parseInt function produces an integer value dictated by intepretation
   of the contents of the string argument according to the specified radix.

   When the parseInt function is called, the following steps are taken:

   1.   Call ToString(string).
   2.   Compute a substring of Result(1) consisting of the leftmost character
   that is not a StrWhiteSpaceChar and all characters to the right of
   that character. (In other words, remove leading whitespace.)
   3.   Let sign be 1.
   4.   If Result(2) is not empty and the first character of Result(2) is a
   minus sign -, let sign be -1.
   5.   If Result(2) is not empty and the first character of Result(2) is a
   plus sign + or a minus sign -, then Result(5) is the substring of
   Result(2) produced by removing the first character; otherwise, Result(5)
   is Result(2).
   6.   If the radix argument is not supplied, go to step 12.
   7.   Call ToInt32(radix).
   8.   If Result(7) is zero, go to step 12; otherwise, if Result(7) < 2 or
   Result(7) > 36, return NaN.
   9.   Let R be Result(7).
   10.   If R = 16 and the length of Result(5) is at least 2 and the first two
   characters of Result(5) are either "0x" or "0X", let S be the substring
   of Result(5) consisting of all but the first two characters; otherwise,
   let S be Result(5).
   11.   Go to step 22.
   12.   If Result(5) is empty or the first character of Result(5) is not 0,
   go to step 20.
   13.   If the length of Result(5) is at least 2 and the second character of
   Result(5) is x or X, go to step 17.
   14.   Let R be 8.
   15.   Let S be Result(5).
   16.   Go to step 22.
   17.   Let R be 16.
   18.   Let S be the substring of Result(5) consisting of all but the first
   two characters.
   19.   Go to step 22.
   20.   Let R be 10.
   21.   Let S be Result(5).
   22.   If S contains any character that is not a radix-R digit, then let Z be
   the substring of S consisting of all characters to the left of the
   leftmost such character; otherwise, let Z be S.
   23.   If Z is empty, return NaN.
   24.   Compute the mathematical integer value that is represented by Z in
   radix-R notation. (But if R is 10 and Z contains more than 20
   significant digits, every digit after the 20th may be replaced by a 0
   digit, at the option of the implementation; and if R is not 2, 4, 8,
   10, 16, or 32, then Result(24) may be an implementation-dependent
   approximation to the mathematical integer value that is represented
   by Z in radix-R notation.)
   25.   Compute the number value for Result(24).
   26.   Return sign Result(25).

   Note that parseInt may interpret only a leading portion of the string as
   an integer value; it ignores any characters that cannot be interpreted as
   part of the notation of an integer, and no indication is given that any
   such characters were ignored.

   Author:             [email protected]
   Date:               28 october 1997

*/
var SECTION = "15.1.2.2-1";
var VERSION = "ECMA_1";
var TITLE   = "parseInt(string, radix)";
var BUGNUMBER = "none";

startTest();

writeHeaderToLog( SECTION + " "+ TITLE);

var HEX_STRING = "0x0";
var HEX_VALUE = 0;

new TestCase( SECTION, 
	      "parseInt.length",     
	      2,     
	      parseInt.length );

new TestCase( SECTION, 
	      "parseInt.length = 0; parseInt.length",    
	      2,     
	      eval("parseInt.length = 0; parseInt.length") );

new TestCase( SECTION, 
	      "var PROPS=''; for ( var p in parseInt ) { PROPS += p; }; PROPS",   "prototype",
	      eval("var PROPS=''; for ( var p in parseInt ) { PROPS += p; }; PROPS") );

new TestCase( SECTION, 
	      "delete parseInt.length",  
	      false, 
	      delete parseInt.length );

new TestCase( SECTION, 
	      "delete parseInt.length; parseInt.length", 
	      2, 
	      eval("delete parseInt.length; parseInt.length") );

new TestCase( SECTION, 
	      "parseInt.length = null; parseInt.length", 
	      2, 
	      eval("parseInt.length = null; parseInt.length") );

new TestCase( SECTION, 
	      "parseInt()",      
	      NaN,   
	      parseInt() );

new TestCase( SECTION, 
	      "parseInt('')",    
	      NaN,   
	      parseInt("") );

new TestCase( SECTION, 
	      "parseInt('','')", 
	      NaN,   
	      parseInt("","") );

new TestCase( SECTION,
	      "parseInt(\"     0xabcdef     ",
	      11259375,
	      parseInt( "      0xabcdef     " ));

new TestCase( SECTION,
	      "parseInt(\"     0XABCDEF     ",
	      11259375,
	      parseInt( "      0XABCDEF     " ) );

new TestCase( SECTION,
	      "parseInt( 0xabcdef )",
	      11259375,
	      parseInt( "0xabcdef") );

new TestCase( SECTION,
	      "parseInt( 0XABCDEF )",
	      11259375,
	      parseInt( "0XABCDEF") );

for ( HEX_STRING = "0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+")",    HEX_VALUE,  parseInt(HEX_STRING) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "0X0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+")",    HEX_VALUE,  parseInt(HEX_STRING) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+",16)",    HEX_VALUE,  parseInt(HEX_STRING,16) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+",16)",    HEX_VALUE,  parseInt(HEX_STRING,16) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+",null)",    HEX_VALUE,  parseInt(HEX_STRING,null) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+", void 0)",    HEX_VALUE,  parseInt(HEX_STRING, void 0) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}

// a few tests with spaces

for ( var space = " ", HEX_STRING = "0x0", HEX_VALUE = 0, POWER = 0;
      POWER < 15;
      POWER++, HEX_STRING = HEX_STRING +"f", space += " ")
{
  new TestCase( SECTION, "parseInt("+space+HEX_STRING+space+", void 0)",    HEX_VALUE,  parseInt(space+HEX_STRING+space, void 0) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}

// a few tests with negative numbers
for ( HEX_STRING = "-0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+")",    HEX_VALUE,  parseInt(HEX_STRING) );
  HEX_VALUE -= Math.pow(16,POWER)*15;
}

// we should stop parsing when we get to a value that is not a numeric literal for the type we expect

for ( HEX_STRING = "0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+"g,16)",    HEX_VALUE,  parseInt(HEX_STRING+"g",16) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+"g,16)",    HEX_VALUE,  parseInt(HEX_STRING+"G",16) );
  HEX_VALUE += Math.pow(16,POWER)*15;
}

for ( HEX_STRING = "-0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+")",    HEX_VALUE,  parseInt(HEX_STRING) );
  HEX_VALUE -= Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "-0X0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+")",    HEX_VALUE,  parseInt(HEX_STRING) );
  HEX_VALUE -= Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "-0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+",16)",    HEX_VALUE,  parseInt(HEX_STRING,16) );
  HEX_VALUE -= Math.pow(16,POWER)*15;
}
for ( HEX_STRING = "-0x0", HEX_VALUE = 0, POWER = 0; POWER < 15; POWER++, HEX_STRING = HEX_STRING +"f" ) {
  new TestCase( SECTION, "parseInt("+HEX_STRING+",16)",    HEX_VALUE,  parseInt(HEX_STRING,16) );
  HEX_VALUE -= Math.pow(16,POWER)*15;
}

//  let us do some octal tests.  numbers that start with 0 and do not provid a radix should
//  default to using "0" as a radix.

var OCT_STRING = "0";
var OCT_VALUE = 0;

for ( OCT_STRING = "0", OCT_VALUE = 0, POWER = 0; POWER < 15; POWER++, OCT_STRING = OCT_STRING +"7" ) {
  new TestCase( SECTION, "parseInt("+OCT_STRING+")",    OCT_VALUE,  parseInt(OCT_STRING) );
  OCT_VALUE += Math.pow(8,POWER)*7;
}

for ( OCT_STRING = "-0", OCT_VALUE = 0, POWER = 0; POWER < 15; POWER++, OCT_STRING = OCT_STRING +"7" ) {
  new TestCase( SECTION, "parseInt("+OCT_STRING+")",    OCT_VALUE,  parseInt(OCT_STRING) );
  OCT_VALUE -= Math.pow(8,POWER)*7;
}

// should get the same results as above if we provid the radix of 8 (or 010)

for ( OCT_STRING = "0", OCT_VALUE = 0, POWER = 0; POWER < 15; POWER++, OCT_STRING = OCT_STRING +"7" ) {
  new TestCase( SECTION, "parseInt("+OCT_STRING+",8)",    OCT_VALUE,  parseInt(OCT_STRING,8) );
  OCT_VALUE += Math.pow(8,POWER)*7;
}
for ( OCT_STRING = "-0", OCT_VALUE = 0, POWER = 0; POWER < 15; POWER++, OCT_STRING = OCT_STRING +"7" ) {
  new TestCase( SECTION, "parseInt("+OCT_STRING+",010)",    OCT_VALUE,  parseInt(OCT_STRING,010) );
  OCT_VALUE -= Math.pow(8,POWER)*7;
}

// we shall stop parsing digits when we get one that isn't a numeric literal of the type we think
// it should be.
for ( OCT_STRING = "0", OCT_VALUE = 0, POWER = 0; POWER < 15; POWER++, OCT_STRING = OCT_STRING +"7" ) {
  new TestCase( SECTION, "parseInt("+OCT_STRING+"8,8)",    OCT_VALUE,  parseInt(OCT_STRING+"8",8) );
  OCT_VALUE += Math.pow(8,POWER)*7;
}
for ( OCT_STRING = "-0", OCT_VALUE = 0, POWER = 0; POWER < 15; POWER++, OCT_STRING = OCT_STRING +"7" ) {
  new TestCase( SECTION, "parseInt("+OCT_STRING+"8,010)",    OCT_VALUE,  parseInt(OCT_STRING+"8",010) );
  OCT_VALUE -= Math.pow(8,POWER)*7;
}

new TestCase( SECTION,
	      "parseInt( '0x' )",             
	      NaN,       
	      parseInt("0x") );

new TestCase( SECTION,
	      "parseInt( '0X' )",             
	      NaN,       
	      parseInt("0X") );

new TestCase( SECTION,
	      "parseInt( '11111111112222222222' )",   
	      11111111112222222222,  
	      parseInt("11111111112222222222") );

new TestCase( SECTION,
	      "parseInt( '111111111122222222223' )",   
	      111111111122222222220,  
	      parseInt("111111111122222222223") );

new TestCase( SECTION,
	      "parseInt( '11111111112222222222',10 )",   
	      11111111112222222222,  
	      parseInt("11111111112222222222",10) );

new TestCase( SECTION,
	      "parseInt( '111111111122222222223',10 )",   
	      111111111122222222220,  
	      parseInt("111111111122222222223",10) );

new TestCase( SECTION,
	      "parseInt( '01234567890', -1 )", 
	      Number.NaN,   
	      parseInt("01234567890",-1) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 0 )", 
	      Number.NaN,    
	      parseInt("01234567890",1) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 1 )", 
	      Number.NaN,    
	      parseInt("01234567890",1) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 2 )", 
	      1,             
	      parseInt("01234567890",2) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 3 )", 
	      5,             
	      parseInt("01234567890",3) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 4 )", 
	      27,            
	      parseInt("01234567890",4) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 5 )", 
	      194,           
	      parseInt("01234567890",5) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 6 )", 
	      1865,          
	      parseInt("01234567890",6) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 7 )", 
	      22875,         
	      parseInt("01234567890",7) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 8 )", 
	      342391,        
	      parseInt("01234567890",8) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 9 )", 
	      6053444,       
	      parseInt("01234567890",9) );

new TestCase( SECTION,
	      "parseInt( '01234567890', 10 )",
	      1234567890,    
	      parseInt("01234567890",10) );

// need more test cases with hex radix

new TestCase( SECTION,
	      "parseInt( '1234567890', '0xa')",
	      1234567890,
	      parseInt("1234567890","0xa") );

new TestCase( SECTION,
	      "parseInt( '012345', 11 )",     
	      17715,         
	      parseInt("012345",11) );

new TestCase( SECTION,
	      "parseInt( '012345', 35 )",     
	      1590195,       
	      parseInt("012345",35) );

new TestCase( SECTION,
	      "parseInt( '012345', 36 )",     
	      1776965,       
	      parseInt("012345",36) );

new TestCase( SECTION,
	      "parseInt( '012345', 37 )",     
	      Number.NaN,    
	      parseInt("012345",37) );

test();




© 2015 - 2024 Weber Informatics LLC | Privacy Policy