rhino1.7.7.testsrc.tests.js1_5.Regress.regress-313967-01.js Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rhino Show documentation
Show all versions of rhino Show documentation
Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically
embedded into Java applications to provide scripting to end users.
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
var gTestfile = 'regress-313967-01.js';
//-----------------------------------------------------------------------------
var BUGNUMBER = 313967;
var summary = 'Compile time of N functions should be O(N)';
var actual = '';
var expect = '';
printBugNumber(BUGNUMBER);
printStatus (summary);
function F(x, y) {
var a = x+y;
var b = x-y;
var c = a+b;
return ( 2*c-1 );
}
function test(N)
{
var src = F.toSource(-1)+"\n";
src = Array(N + 1).join(src);
var counter = 0;
src = src.replace(/F/g, function() { ++counter; return "F"+counter; })
var now = Date.now;
var t = now();
eval(src);
return now() - t;
}
var times = [];
for (var i = 0; i != 10; ++i) {
var time = test(1000 + i * 2000);
times.push(time);
gc();
}
var r = calculate_least_square_r(times);
print('test times: ' + times);
print("r coefficient for the estimation that eval is O(N) where N is number\n"+
"of functions in the script: "+r);
print( r < 0.97 ? "Eval time growth is not linear" : "The growth seems to be linear");
reportCompare(true, r >= 0.97, summary);
function calculate_least_square_r(array)
{
var sum_x = 0;
var sum_y = 0;
var sum_x_squared = 0;
var sum_y_squared = 0;
var sum_xy = 0;
var n = array.length;
for (var i = 0; i != n; ++i) {
var x = i;
var y = array[i];
sum_x += x;
sum_y += y;
sum_x_squared += x*x;
sum_y_squared += y*y;
sum_xy += x*y;
}
var x_average = sum_x / n;
var y_average = sum_y / n;
var sxx = sum_x_squared - n * x_average * x_average;
var syy = sum_y_squared - n * y_average * y_average;
var sxy = sum_xy - n * x_average * y_average;
var r = sxy*sxy/(sxx*syy);
return r;
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy