Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
import "layout";
import "hierarchy";
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
d3.layout.tree = function() {
var hierarchy = d3.layout.hierarchy().sort(null).value(null),
separation = d3_layout_treeSeparation,
size = [1, 1], // width, height
nodeSize = null;
function tree(d, i) {
var nodes = hierarchy.call(this, d, i),
root0 = nodes[0],
root1 = wrapTree(root0);
// Compute the layout using Buchheim et al.'s algorithm.
d3_layout_hierarchyVisitAfter(root1, firstWalk), root1.parent.m = -root1.z;
d3_layout_hierarchyVisitBefore(root1, secondWalk);
// If a fixed node size is specified, scale x and y.
if (nodeSize) d3_layout_hierarchyVisitBefore(root0, sizeNode);
// If a fixed tree size is specified, scale x and y based on the extent.
// Compute the left-most, right-most, and depth-most nodes for extents.
else {
var left = root0,
right = root0,
bottom = root0;
d3_layout_hierarchyVisitBefore(root0, function(node) {
if (node.x < left.x) left = node;
if (node.x > right.x) right = node;
if (node.depth > bottom.depth) bottom = node;
});
var tx = separation(left, right) / 2 - left.x,
kx = size[0] / (right.x + separation(right, left) / 2 + tx),
ky = size[1] / (bottom.depth || 1);
d3_layout_hierarchyVisitBefore(root0, function(node) {
node.x = (node.x + tx) * kx;
node.y = node.depth * ky;
});
}
return nodes;
}
function wrapTree(root0) {
var root1 = {A: null, children: [root0]},
queue = [root1],
node1;
while ((node1 = queue.pop()) != null) {
for (var children = node1.children, child, i = 0, n = children.length; i < n; ++i) {
queue.push((children[i] = child = {
_: children[i], // source node
parent: node1,
children: (child = children[i].children) && child.slice() || [],
A: null, // default ancestor
a: null, // ancestor
z: 0, // prelim
m: 0, // mod
c: 0, // change
s: 0, // shift
t: null, // thread
i: i // number
}).a = child);
}
}
return root1.children[0];
}
// FIRST WALK
// Computes a preliminary x-coordinate for v. Before that, FIRST WALK is
// applied recursively to the children of v, as well as the function
// APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the
// node v is placed to the midpoint of its outermost children.
function firstWalk(v) {
var children = v.children,
siblings = v.parent.children,
w = v.i ? siblings[v.i - 1] : null;
if (children.length) {
d3_layout_treeShift(v);
var midpoint = (children[0].z + children[children.length - 1].z) / 2;
if (w) {
v.z = w.z + separation(v._, w._);
v.m = v.z - midpoint;
} else {
v.z = midpoint;
}
} else if (w) {
v.z = w.z + separation(v._, w._);
}
v.parent.A = apportion(v, w, v.parent.A || siblings[0]);
}
// SECOND WALK
// Computes all real x-coordinates by summing up the modifiers recursively.
function secondWalk(v) {
v._.x = v.z + v.parent.m;
v.m += v.parent.m;
}
// APPORTION
// The core of the algorithm. Here, a new subtree is combined with the
// previous subtrees. Threads are used to traverse the inside and outside
// contours of the left and right subtree up to the highest common level. The
// vertices used for the traversals are vi+, vi-, vo-, and vo+, where the
// superscript o means outside and i means inside, the subscript - means left
// subtree and + means right subtree. For summing up the modifiers along the
// contour, we use respective variables si+, si-, so-, and so+. Whenever two
// nodes of the inside contours conflict, we compute the left one of the
// greatest uncommon ancestors using the function ANCESTOR and call MOVE
// SUBTREE to shift the subtree and prepare the shifts of smaller subtrees.
// Finally, we add a new thread (if necessary).
function apportion(v, w, ancestor) {
if (w) {
var vip = v,
vop = v,
vim = w,
vom = vip.parent.children[0],
sip = vip.m,
sop = vop.m,
sim = vim.m,
som = vom.m,
shift;
while (vim = d3_layout_treeRight(vim), vip = d3_layout_treeLeft(vip), vim && vip) {
vom = d3_layout_treeLeft(vom);
vop = d3_layout_treeRight(vop);
vop.a = v;
shift = vim.z + sim - vip.z - sip + separation(vim._, vip._);
if (shift > 0) {
d3_layout_treeMove(d3_layout_treeAncestor(vim, v, ancestor), v, shift);
sip += shift;
sop += shift;
}
sim += vim.m;
sip += vip.m;
som += vom.m;
sop += vop.m;
}
if (vim && !d3_layout_treeRight(vop)) {
vop.t = vim;
vop.m += sim - sop;
}
if (vip && !d3_layout_treeLeft(vom)) {
vom.t = vip;
vom.m += sip - som;
ancestor = v;
}
}
return ancestor;
}
function sizeNode(node) {
node.x *= size[0];
node.y = node.depth * size[1];
}
tree.separation = function(x) {
if (!arguments.length) return separation;
separation = x;
return tree;
};
tree.size = function(x) {
if (!arguments.length) return nodeSize ? null : size;
nodeSize = (size = x) == null ? sizeNode : null;
return tree;
};
tree.nodeSize = function(x) {
if (!arguments.length) return nodeSize ? size : null;
nodeSize = (size = x) == null ? null : sizeNode;
return tree;
};
return d3_layout_hierarchyRebind(tree, hierarchy);
};
function d3_layout_treeSeparation(a, b) {
return a.parent == b.parent ? 1 : 2;
}
// function d3_layout_treeSeparationRadial(a, b) {
// return (a.parent == b.parent ? 1 : 2) / a.depth;
// }
// NEXT LEFT
// This function is used to traverse the left contour of a subtree (or
// subforest). It returns the successor of v on this contour. This successor is
// either given by the leftmost child of v or by the thread of v. The function
// returns null if and only if v is on the highest level of its subtree.
function d3_layout_treeLeft(v) {
var children = v.children;
return children.length ? children[0] : v.t;
}
// NEXT RIGHT
// This function works analogously to NEXT LEFT.
function d3_layout_treeRight(v) {
var children = v.children, n;
return (n = children.length) ? children[n - 1] : v.t;
}
// MOVE SUBTREE
// Shifts the current subtree rooted at w+. This is done by increasing
// prelim(w+) and mod(w+) by shift.
function d3_layout_treeMove(wm, wp, shift) {
var change = shift / (wp.i - wm.i);
wp.c -= change;
wp.s += shift;
wm.c += change;
wp.z += shift;
wp.m += shift;
}
// EXECUTE SHIFTS
// All other shifts, applied to the smaller subtrees between w- and w+, are
// performed by this function. To prepare the shifts, we have to adjust
// change(w+), shift(w+), and change(w-).
function d3_layout_treeShift(v) {
var shift = 0,
change = 0,
children = v.children,
i = children.length,
w;
while (--i >= 0) {
w = children[i];
w.z += shift;
w.m += shift;
shift += w.s + (change += w.c);
}
}
// ANCESTOR
// If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise,
// returns the specified (default) ancestor.
function d3_layout_treeAncestor(vim, v, ancestor) {
return vim.a.parent === v.parent ? vim.a : ancestor;
}