package.src.data.bucket.js Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mapbox-gl Show documentation
Show all versions of mapbox-gl Show documentation
A WebGL interactive maps library
The newest version!
// @flow
import type {CollisionBoxArray} from './array_types';
import type Style from '../style/style';
import type {TypedStyleLayer} from '../style/style_layer/typed_style_layer';
import type FeatureIndex from './feature_index';
import type Context from '../gl/context';
import type {FeatureStates} from '../source/source_state';
import type {ImagePosition} from '../render/image_atlas';
import type {CanonicalTileID} from '../source/tile_id';
export type BucketParameters = {
index: number,
layers: Array,
zoom: number,
pixelRatio: number,
overscaling: number,
collisionBoxArray: CollisionBoxArray,
sourceLayerIndex: number,
sourceID: string
}
export type PopulateParameters = {
featureIndex: FeatureIndex,
iconDependencies: {},
patternDependencies: {},
glyphDependencies: {},
availableImages: Array
}
export type IndexedFeature = {
feature: VectorTileFeature,
id: number | string,
index: number,
sourceLayerIndex: number,
}
export type BucketFeature = {|
index: number,
sourceLayerIndex: number,
geometry: Array>,
properties: Object,
type: 1 | 2 | 3,
id?: any,
+patterns: {[_: string]: {"min": string, "mid": string, "max": string}},
sortKey?: number
|};
/**
* The `Bucket` interface is the single point of knowledge about turning vector
* tiles into WebGL buffers.
*
* `Bucket` is an abstract interface. An implementation exists for each style layer type.
* Create a bucket via the `StyleLayer#createBucket` method.
*
* The concrete bucket types, using layout options from the style layer,
* transform feature geometries into vertex and index data for use by the
* vertex shader. They also (via `ProgramConfiguration`) use feature
* properties and the zoom level to populate the attributes needed for
* data-driven styling.
*
* Buckets are designed to be built on a worker thread and then serialized and
* transferred back to the main thread for rendering. On the worker side, a
* bucket's vertex, index, and attribute data is stored in `bucket.arrays:
* ArrayGroup`. When a bucket's data is serialized and sent back to the main
* thread, is gets deserialized (using `new Bucket(serializedBucketData)`, with
* the array data now stored in `bucket.buffers: BufferGroup`. BufferGroups
* hold the same data as ArrayGroups, but are tuned for consumption by WebGL.
*
* @private
*/
export interface Bucket {
layerIds: Array;
hasPattern: boolean;
+layers: Array;
+stateDependentLayers: Array;
+stateDependentLayerIds: Array;
populate(features: Array, options: PopulateParameters, canonical: CanonicalTileID): void;
update(states: FeatureStates, vtLayer: VectorTileLayer, imagePositions: {[_: string]: ImagePosition}): void;
isEmpty(): boolean;
upload(context: Context): void;
uploadPending(): boolean;
/**
* Release the WebGL resources associated with the buffers. Note that because
* buckets are shared between layers having the same layout properties, they
* must be destroyed in groups (all buckets for a tile, or all symbol buckets).
*
* @private
*/
destroy(): void;
}
export function deserialize(input: Array, style: Style): {[_: string]: Bucket} {
const output = {};
// Guard against the case where the map's style has been set to null while
// this bucket has been parsing.
if (!style) return output;
for (const bucket of input) {
const layers = bucket.layerIds
.map((id) => style.getLayer(id))
.filter(Boolean);
if (layers.length === 0) {
continue;
}
// look up StyleLayer objects from layer ids (since we don't
// want to waste time serializing/copying them from the worker)
(bucket: any).layers = layers;
if ((bucket: any).stateDependentLayerIds) {
(bucket: any).stateDependentLayers = (bucket: any).stateDependentLayerIds.map((lId) => layers.filter((l) => l.id === lId)[0]);
}
for (const layer of layers) {
output[layer.id] = bucket;
}
}
return output;
}