package.src.symbol.collision_index.js Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mapbox-gl Show documentation
Show all versions of mapbox-gl Show documentation
A WebGL interactive maps library
The newest version!
// @flow
import Point from '@mapbox/point-geometry';
import clipLine from './clip_line';
import PathInterpolator from './path_interpolator';
import * as intersectionTests from '../util/intersection_tests';
import Grid from './grid_index';
import {mat4} from 'gl-matrix';
import ONE_EM from '../symbol/one_em';
import assert from 'assert';
import * as projection from '../symbol/projection';
import type Transform from '../geo/transform';
import type {SingleCollisionBox} from '../data/bucket/symbol_bucket';
import type {
GlyphOffsetArray,
SymbolLineVertexArray
} from '../data/array_types';
// When a symbol crosses the edge that causes it to be included in
// collision detection, it will cause changes in the symbols around
// it. This constant specifies how many pixels to pad the edge of
// the viewport for collision detection so that the bulk of the changes
// occur offscreen. Making this constant greater increases label
// stability, but it's expensive.
const viewportPadding = 100;
/**
* A collision index used to prevent symbols from overlapping. It keep tracks of
* where previous symbols have been placed and is used to check if a new
* symbol overlaps with any previously added symbols.
*
* There are two steps to insertion: first placeCollisionBox/Circles checks if
* there's room for a symbol, then insertCollisionBox/Circles actually puts the
* symbol in the index. The two step process allows paired symbols to be inserted
* together even if they overlap.
*
* @private
*/
class CollisionIndex {
grid: Grid;
ignoredGrid: Grid;
transform: Transform;
pitchfactor: number;
screenRightBoundary: number;
screenBottomBoundary: number;
gridRightBoundary: number;
gridBottomBoundary: number;
constructor(
transform: Transform,
grid: Grid = new Grid(transform.width + 2 * viewportPadding, transform.height + 2 * viewportPadding, 25),
ignoredGrid: Grid = new Grid(transform.width + 2 * viewportPadding, transform.height + 2 * viewportPadding, 25)
) {
this.transform = transform;
this.grid = grid;
this.ignoredGrid = ignoredGrid;
this.pitchfactor = Math.cos(transform._pitch) * transform.cameraToCenterDistance;
this.screenRightBoundary = transform.width + viewportPadding;
this.screenBottomBoundary = transform.height + viewportPadding;
this.gridRightBoundary = transform.width + 2 * viewportPadding;
this.gridBottomBoundary = transform.height + 2 * viewportPadding;
}
placeCollisionBox(collisionBox: SingleCollisionBox, allowOverlap: boolean, textPixelRatio: number, posMatrix: mat4, collisionGroupPredicate?: any): { box: Array, offscreen: boolean } {
const projectedPoint = this.projectAndGetPerspectiveRatio(posMatrix, collisionBox.anchorPointX, collisionBox.anchorPointY);
const tileToViewport = textPixelRatio * projectedPoint.perspectiveRatio;
const tlX = collisionBox.x1 * tileToViewport + projectedPoint.point.x;
const tlY = collisionBox.y1 * tileToViewport + projectedPoint.point.y;
const brX = collisionBox.x2 * tileToViewport + projectedPoint.point.x;
const brY = collisionBox.y2 * tileToViewport + projectedPoint.point.y;
if (!this.isInsideGrid(tlX, tlY, brX, brY) ||
(!allowOverlap && this.grid.hitTest(tlX, tlY, brX, brY, collisionGroupPredicate))) {
return {
box: [],
offscreen: false
};
}
return {
box: [tlX, tlY, brX, brY],
offscreen: this.isOffscreen(tlX, tlY, brX, brY)
};
}
placeCollisionCircles(allowOverlap: boolean,
symbol: any,
lineVertexArray: SymbolLineVertexArray,
glyphOffsetArray: GlyphOffsetArray,
fontSize: number,
posMatrix: mat4,
labelPlaneMatrix: mat4,
labelToScreenMatrix?: mat4,
showCollisionCircles: boolean,
pitchWithMap: boolean,
collisionGroupPredicate?: any,
circlePixelDiameter: number,
textPixelPadding: number): { circles: Array, offscreen: boolean, collisionDetected: boolean } {
const placedCollisionCircles = [];
const tileUnitAnchorPoint = new Point(symbol.anchorX, symbol.anchorY);
const screenAnchorPoint = projection.project(tileUnitAnchorPoint, posMatrix);
const perspectiveRatio = projection.getPerspectiveRatio(this.transform.cameraToCenterDistance, screenAnchorPoint.signedDistanceFromCamera);
const labelPlaneFontSize = pitchWithMap ? fontSize / perspectiveRatio : fontSize * perspectiveRatio;
const labelPlaneFontScale = labelPlaneFontSize / ONE_EM;
const labelPlaneAnchorPoint = projection.project(tileUnitAnchorPoint, labelPlaneMatrix).point;
const projectionCache = {};
const lineOffsetX = symbol.lineOffsetX * labelPlaneFontScale;
const lineOffsetY = symbol.lineOffsetY * labelPlaneFontScale;
const firstAndLastGlyph = projection.placeFirstAndLastGlyph(
labelPlaneFontScale,
glyphOffsetArray,
lineOffsetX,
lineOffsetY,
/*flip*/ false,
labelPlaneAnchorPoint,
tileUnitAnchorPoint,
symbol,
lineVertexArray,
labelPlaneMatrix,
projectionCache);
let collisionDetected = false;
let inGrid = false;
let entirelyOffscreen = true;
if (firstAndLastGlyph) {
const radius = circlePixelDiameter * 0.5 * perspectiveRatio + textPixelPadding;
const screenPlaneMin = new Point(-viewportPadding, -viewportPadding);
const screenPlaneMax = new Point(this.screenRightBoundary, this.screenBottomBoundary);
const interpolator = new PathInterpolator();
// Construct a projected path from projected line vertices. Anchor points are ignored and removed
const first = firstAndLastGlyph.first;
const last = firstAndLastGlyph.last;
let projectedPath = [];
for (let i = first.path.length - 1; i >= 1; i--) {
projectedPath.push(first.path[i]);
}
for (let i = 1; i < last.path.length; i++) {
projectedPath.push(last.path[i]);
}
assert(projectedPath.length >= 2);
// Tolerate a slightly longer distance than one diameter between two adjacent circles
const circleDist = radius * 2.5;
// The path might need to be converted into screen space if a pitched map is used as the label space
if (labelToScreenMatrix) {
const screenSpacePath = projectedPath.map(p => projection.project(p, labelToScreenMatrix));
// Do not try to place collision circles if even of the points is behind the camera.
// This is a plausible scenario with big camera pitch angles
if (screenSpacePath.some(point => point.signedDistanceFromCamera <= 0)) {
projectedPath = [];
} else {
projectedPath = screenSpacePath.map(p => p.point);
}
}
let segments = [];
if (projectedPath.length > 0) {
// Quickly check if the path is fully inside or outside of the padded collision region.
// For overlapping paths we'll only create collision circles for the visible segments
const minPoint = projectedPath[0].clone();
const maxPoint = projectedPath[0].clone();
for (let i = 1; i < projectedPath.length; i++) {
minPoint.x = Math.min(minPoint.x, projectedPath[i].x);
minPoint.y = Math.min(minPoint.y, projectedPath[i].y);
maxPoint.x = Math.max(maxPoint.x, projectedPath[i].x);
maxPoint.y = Math.max(maxPoint.y, projectedPath[i].y);
}
if (minPoint.x >= screenPlaneMin.x && maxPoint.x <= screenPlaneMax.x &&
minPoint.y >= screenPlaneMin.y && maxPoint.y <= screenPlaneMax.y) {
// Quad fully visible
segments = [projectedPath];
} else if (maxPoint.x < screenPlaneMin.x || minPoint.x > screenPlaneMax.x ||
maxPoint.y < screenPlaneMin.y || minPoint.y > screenPlaneMax.y) {
// Not visible
segments = [];
} else {
segments = clipLine([projectedPath], screenPlaneMin.x, screenPlaneMin.y, screenPlaneMax.x, screenPlaneMax.y);
}
}
for (const seg of segments) {
// interpolate positions for collision circles. Add a small padding to both ends of the segment
assert(seg.length > 0);
interpolator.reset(seg, radius * 0.25);
let numCircles = 0;
if (interpolator.length <= 0.5 * radius) {
numCircles = 1;
} else {
numCircles = Math.ceil(interpolator.paddedLength / circleDist) + 1;
}
for (let i = 0; i < numCircles; i++) {
const t = i / Math.max(numCircles - 1, 1);
const circlePosition = interpolator.lerp(t);
// add viewport padding to the position and perform initial collision check
const centerX = circlePosition.x + viewportPadding;
const centerY = circlePosition.y + viewportPadding;
placedCollisionCircles.push(centerX, centerY, radius, 0);
const x1 = centerX - radius;
const y1 = centerY - radius;
const x2 = centerX + radius;
const y2 = centerY + radius;
entirelyOffscreen = entirelyOffscreen && this.isOffscreen(x1, y1, x2, y2);
inGrid = inGrid || this.isInsideGrid(x1, y1, x2, y2);
if (!allowOverlap) {
if (this.grid.hitTestCircle(centerX, centerY, radius, collisionGroupPredicate)) {
// Don't early exit if we're showing the debug circles because we still want to calculate
// which circles are in use
collisionDetected = true;
if (!showCollisionCircles) {
return {
circles: [],
offscreen: false,
collisionDetected
};
}
}
}
}
}
}
return {
circles: ((!showCollisionCircles && collisionDetected) || !inGrid) ? [] : placedCollisionCircles,
offscreen: entirelyOffscreen,
collisionDetected
};
}
/**
* Because the geometries in the CollisionIndex are an approximation of the shape of
* symbols on the map, we use the CollisionIndex to look up the symbol part of
* `queryRenderedFeatures`.
*
* @private
*/
queryRenderedSymbols(viewportQueryGeometry: Array) {
if (viewportQueryGeometry.length === 0 || (this.grid.keysLength() === 0 && this.ignoredGrid.keysLength() === 0)) {
return {};
}
const query = [];
let minX = Infinity;
let minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (const point of viewportQueryGeometry) {
const gridPoint = new Point(point.x + viewportPadding, point.y + viewportPadding);
minX = Math.min(minX, gridPoint.x);
minY = Math.min(minY, gridPoint.y);
maxX = Math.max(maxX, gridPoint.x);
maxY = Math.max(maxY, gridPoint.y);
query.push(gridPoint);
}
const features = this.grid.query(minX, minY, maxX, maxY)
.concat(this.ignoredGrid.query(minX, minY, maxX, maxY));
const seenFeatures = {};
const result = {};
for (const feature of features) {
const featureKey = feature.key;
// Skip already seen features.
if (seenFeatures[featureKey.bucketInstanceId] === undefined) {
seenFeatures[featureKey.bucketInstanceId] = {};
}
if (seenFeatures[featureKey.bucketInstanceId][featureKey.featureIndex]) {
continue;
}
// Check if query intersects with the feature box
// "Collision Circles" for line labels are treated as boxes here
// Since there's no actual collision taking place, the circle vs. square
// distinction doesn't matter as much, and box geometry is easier
// to work with.
const bbox = [
new Point(feature.x1, feature.y1),
new Point(feature.x2, feature.y1),
new Point(feature.x2, feature.y2),
new Point(feature.x1, feature.y2)
];
if (!intersectionTests.polygonIntersectsPolygon(query, bbox)) {
continue;
}
seenFeatures[featureKey.bucketInstanceId][featureKey.featureIndex] = true;
if (result[featureKey.bucketInstanceId] === undefined) {
result[featureKey.bucketInstanceId] = [];
}
result[featureKey.bucketInstanceId].push(featureKey.featureIndex);
}
return result;
}
insertCollisionBox(collisionBox: Array, ignorePlacement: boolean, bucketInstanceId: number, featureIndex: number, collisionGroupID: number) {
const grid = ignorePlacement ? this.ignoredGrid : this.grid;
const key = {bucketInstanceId, featureIndex, collisionGroupID};
grid.insert(key, collisionBox[0], collisionBox[1], collisionBox[2], collisionBox[3]);
}
insertCollisionCircles(collisionCircles: Array, ignorePlacement: boolean, bucketInstanceId: number, featureIndex: number, collisionGroupID: number) {
const grid = ignorePlacement ? this.ignoredGrid : this.grid;
const key = {bucketInstanceId, featureIndex, collisionGroupID};
for (let k = 0; k < collisionCircles.length; k += 4) {
grid.insertCircle(key, collisionCircles[k], collisionCircles[k + 1], collisionCircles[k + 2]);
}
}
projectAndGetPerspectiveRatio(posMatrix: mat4, x: number, y: number) {
const p = [x, y, 0, 1];
projection.xyTransformMat4(p, p, posMatrix);
const a = new Point(
(((p[0] / p[3] + 1) / 2) * this.transform.width) + viewportPadding,
(((-p[1] / p[3] + 1) / 2) * this.transform.height) + viewportPadding
);
return {
point: a,
// See perspective ratio comment in symbol_sdf.vertex
// We're doing collision detection in viewport space so we need
// to scale down boxes in the distance
perspectiveRatio: 0.5 + 0.5 * (this.transform.cameraToCenterDistance / p[3])
};
}
isOffscreen(x1: number, y1: number, x2: number, y2: number) {
return x2 < viewportPadding || x1 >= this.screenRightBoundary || y2 < viewportPadding || y1 > this.screenBottomBoundary;
}
isInsideGrid(x1: number, y1: number, x2: number, y2: number) {
return x2 >= 0 && x1 < this.gridRightBoundary && y2 >= 0 && y1 < this.gridBottomBoundary;
}
/*
* Returns a matrix for transforming collision shapes to viewport coordinate space.
* Use this function to render e.g. collision circles on the screen.
* example transformation: clipPos = glCoordMatrix * viewportMatrix * circle_pos
*/
getViewportMatrix(): mat4 {
const m = mat4.identity([]);
mat4.translate(m, m, [-viewportPadding, -viewportPadding, 0.0]);
return m;
}
}
export default CollisionIndex;