All Downloads are FREE. Search and download functionalities are using the official Maven repository.

package.modules.esnext.math.sum-precise.js Maven / Gradle / Ivy

The newest version!
'use strict';
// based on Shewchuk's algorithm for exactly floating point addition
// adapted from https://github.com/tc39/proposal-math-sum/blob/3513d58323a1ae25560e8700aa5294500c6c9287/polyfill/polyfill.mjs
var $ = require('../internals/export');
var uncurryThis = require('../internals/function-uncurry-this');
var iterate = require('../internals/iterate');

var $RangeError = RangeError;
var $TypeError = TypeError;
var $Infinity = Infinity;
var $NaN = NaN;
var abs = Math.abs;
var pow = Math.pow;
var push = uncurryThis([].push);

var POW_2_1023 = pow(2, 1023);
var MAX_SAFE_INTEGER = pow(2, 53) - 1; // 2 ** 53 - 1 === 9007199254740992
var MAX_DOUBLE = Number.MAX_VALUE; // 2 ** 1024 - 2 ** (1023 - 52) === 1.79769313486231570815e+308
var MAX_ULP = pow(2, 971); // 2 ** (1023 - 52) === 1.99584030953471981166e+292

var NOT_A_NUMBER = {};
var MINUS_INFINITY = {};
var PLUS_INFINITY = {};
var MINUS_ZERO = {};
var FINITE = {};

// prerequisite: abs(x) >= abs(y)
var twosum = function (x, y) {
  var hi = x + y;
  var lo = y - (hi - x);
  return { hi: hi, lo: lo };
};

// `Math.sumPrecise` method
// https://github.com/tc39/proposal-math-sum
$({ target: 'Math', stat: true }, {
  // eslint-disable-next-line max-statements -- ok
  sumPrecise: function sumPrecise(items) {
    var numbers = [];
    var count = 0;
    var state = MINUS_ZERO;

    iterate(items, function (n) {
      if (++count >= MAX_SAFE_INTEGER) throw new $RangeError('Maximum allowed index exceeded');
      if (typeof n != 'number') throw new $TypeError('Value is not a number');
      if (state !== NOT_A_NUMBER) {
        // eslint-disable-next-line no-self-compare -- NaN check
        if (n !== n) state = NOT_A_NUMBER;
        else if (n === $Infinity) state = state === MINUS_INFINITY ? NOT_A_NUMBER : PLUS_INFINITY;
        else if (n === -$Infinity) state = state === PLUS_INFINITY ? NOT_A_NUMBER : MINUS_INFINITY;
        else if ((n !== 0 || (1 / n) === $Infinity) && (state === MINUS_ZERO || state === FINITE)) {
          state = FINITE;
          push(numbers, n);
        }
      }
    });

    switch (state) {
      case NOT_A_NUMBER: return $NaN;
      case MINUS_INFINITY: return -$Infinity;
      case PLUS_INFINITY: return $Infinity;
      case MINUS_ZERO: return -0;
    }

    var partials = [];
    var overflow = 0; // conceptually 2 ** 1024 times this value; the final partial is biased by this amount
    var x, y, sum, hi, lo, tmp;

    for (var i = 0; i < numbers.length; i++) {
      x = numbers[i];
      var actuallyUsedPartials = 0;
      for (var j = 0; j < partials.length; j++) {
        y = partials[j];
        if (abs(x) < abs(y)) {
          tmp = x;
          x = y;
          y = tmp;
        }
        sum = twosum(x, y);
        hi = sum.hi;
        lo = sum.lo;
        if (abs(hi) === $Infinity) {
          var sign = hi === $Infinity ? 1 : -1;
          overflow += sign;

          x = (x - (sign * POW_2_1023)) - (sign * POW_2_1023);
          if (abs(x) < abs(y)) {
            tmp = x;
            x = y;
            y = tmp;
          }
          sum = twosum(x, y);
          hi = sum.hi;
          lo = sum.lo;
        }
        if (lo !== 0) partials[actuallyUsedPartials++] = lo;
        x = hi;
      }
      partials.length = actuallyUsedPartials;
      if (x !== 0) push(partials, x);
    }

    // compute the exact sum of partials, stopping once we lose precision
    var n = partials.length - 1;
    hi = 0;
    lo = 0;

    if (overflow !== 0) {
      var next = n >= 0 ? partials[n] : 0;
      n--;
      if (abs(overflow) > 1 || (overflow > 0 && next > 0) || (overflow < 0 && next < 0)) {
        return overflow > 0 ? $Infinity : -$Infinity;
      }
      // here we actually have to do the arithmetic
      // drop a factor of 2 so we can do it without overflow
      // assert(abs(overflow) === 1)
      sum = twosum(overflow * POW_2_1023, next / 2);
      hi = sum.hi;
      lo = sum.lo;
      lo *= 2;
      if (abs(2 * hi) === $Infinity) {
        // rounding to the maximum value
        if (hi > 0) {
          return (hi === POW_2_1023 && lo === -(MAX_ULP / 2) && n >= 0 && partials[n] < 0) ? MAX_DOUBLE : $Infinity;
        } return (hi === -POW_2_1023 && lo === (MAX_ULP / 2) && n >= 0 && partials[n] > 0) ? -MAX_DOUBLE : -$Infinity;
      }

      if (lo !== 0) {
        partials[++n] = lo;
        lo = 0;
      }

      hi *= 2;
    }

    while (n >= 0) {
      sum = twosum(hi, partials[n--]);
      hi = sum.hi;
      lo = sum.lo;
      if (lo !== 0) break;
    }

    if (n >= 0 && ((lo < 0 && partials[n] < 0) || (lo > 0 && partials[n] > 0))) {
      y = lo * 2;
      x = hi + y;
      if (y === x - hi) hi = x;
    }

    return hi;
  }
});




© 2015 - 2024 Weber Informatics LLC | Privacy Policy