All Downloads are FREE. Search and download functionalities are using the official Maven repository.

package.es-modules.Series.Tilemap.TilemapShapes.js Maven / Gradle / Ivy

The newest version!
/* *
 *
 *  Tilemaps module
 *
 *  (c) 2010-2024 Highsoft AS
 *  Author: Øystein Moseng
 *
 *  License: www.highcharts.com/license
 *
 *  !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
 *
 * */
'use strict';
import H from '../../Core/Globals.js';
const { noop } = H;
import SeriesRegistry from '../../Core/Series/SeriesRegistry.js';
const { heatmap: HeatmapSeries, scatter: ScatterSeries } = SeriesRegistry.seriesTypes;
import U from '../../Core/Utilities.js';
const { clamp, pick } = U;
/* *
 *
 *  Functions
 *
 * */
/**
 * Utility func to get padding definition from tile size division
 * @private
 */
function tilePaddingFromTileSize(series, xDiv, yDiv) {
    const options = series.options;
    return {
        xPad: (options.colsize || 1) / -xDiv,
        yPad: (options.rowsize || 1) / -yDiv
    };
}
/* *
 *
 *  Registry
 *
 * */
/**
 * Map of shape types.
 * @private
 */
const TilemapShapes = {
    // Hexagon shape type.
    hexagon: {
        alignDataLabel: ScatterSeries.prototype.alignDataLabel,
        getSeriesPadding: function (series) {
            return tilePaddingFromTileSize(series, 3, 2);
        },
        haloPath: function (size) {
            if (!size) {
                return [];
            }
            const hexagon = this.tileEdges;
            return [
                ['M', hexagon.x2 - size, hexagon.y1 + size],
                ['L', hexagon.x3 + size, hexagon.y1 + size],
                ['L', hexagon.x4 + size * 1.5, hexagon.y2],
                ['L', hexagon.x3 + size, hexagon.y3 - size],
                ['L', hexagon.x2 - size, hexagon.y3 - size],
                ['L', hexagon.x1 - size * 1.5, hexagon.y2],
                ['Z']
            ];
        },
        translate: function () {
            const series = this, options = series.options, xAxis = series.xAxis, yAxis = series.yAxis, seriesPointPadding = options.pointPadding || 0, xPad = (options.colsize || 1) / 3, yPad = (options.rowsize || 1) / 2;
            let yShift;
            series.generatePoints();
            for (const point of series.points) {
                let x1 = clamp(Math.floor(xAxis.len -
                    xAxis.translate(point.x - xPad * 2, 0, 1, 0, 1)), -xAxis.len, 2 * xAxis.len), x2 = clamp(Math.floor(xAxis.len -
                    xAxis.translate(point.x - xPad, 0, 1, 0, 1)), -xAxis.len, 2 * xAxis.len), x3 = clamp(Math.floor(xAxis.len -
                    xAxis.translate(point.x + xPad, 0, 1, 0, 1)), -xAxis.len, 2 * xAxis.len), x4 = clamp(Math.floor(xAxis.len -
                    xAxis.translate(point.x + xPad * 2, 0, 1, 0, 1)), -xAxis.len, 2 * xAxis.len), y1 = clamp(Math.floor(yAxis.translate(point.y - yPad, 0, 1, 0, 1)), -yAxis.len, 2 * yAxis.len), y2 = clamp(Math.floor(yAxis.translate(point.y, 0, 1, 0, 1)), -yAxis.len, 2 * yAxis.len), y3 = clamp(Math.floor(yAxis.translate(point.y + yPad, 0, 1, 0, 1)), -yAxis.len, 2 * yAxis.len);
                const pointPadding = point.pointPadding ?? seriesPointPadding, 
                // We calculate the point padding of the midpoints to
                // preserve the angles of the shape.
                midPointPadding = pointPadding *
                    Math.abs(x2 - x1) / Math.abs(y3 - y2), xMidPadding = xAxis.reversed ?
                    -midPointPadding : midPointPadding, xPointPadding = xAxis.reversed ?
                    -pointPadding : pointPadding, yPointPadding = yAxis.reversed ?
                    -pointPadding : pointPadding;
                // Shift y-values for every second grid column
                if (point.x % 2) {
                    yShift = yShift || Math.round(Math.abs(y3 - y1) / 2) *
                        // We have to reverse the shift for reversed y-axes
                        (yAxis.reversed ? -1 : 1);
                    y1 += yShift;
                    y2 += yShift;
                    y3 += yShift;
                }
                // Set plotX and plotY for use in K-D-Tree and more
                point.plotX = point.clientX = (x2 + x3) / 2;
                point.plotY = y2;
                // Apply point padding to translated coordinates
                x1 += xMidPadding + xPointPadding;
                x2 += xPointPadding;
                x3 -= xPointPadding;
                x4 -= xMidPadding + xPointPadding;
                y1 -= yPointPadding;
                y3 += yPointPadding;
                // Store points for halo creation
                point.tileEdges = {
                    x1: x1, x2: x2, x3: x3, x4: x4, y1: y1, y2: y2, y3: y3
                };
                // Finally set the shape for this point
                point.shapeType = 'path';
                point.shapeArgs = {
                    d: [
                        ['M', x2, y1],
                        ['L', x3, y1],
                        ['L', x4, y2],
                        ['L', x3, y3],
                        ['L', x2, y3],
                        ['L', x1, y2],
                        ['Z']
                    ]
                };
            }
            series.translateColors();
        }
    },
    // Diamond shape type.
    diamond: {
        alignDataLabel: ScatterSeries.prototype.alignDataLabel,
        getSeriesPadding: function (series) {
            return tilePaddingFromTileSize(series, 2, 2);
        },
        haloPath: function (size) {
            if (!size) {
                return [];
            }
            const diamond = this.tileEdges;
            return [
                ['M', diamond.x2, diamond.y1 + size],
                ['L', diamond.x3 + size, diamond.y2],
                ['L', diamond.x2, diamond.y3 - size],
                ['L', diamond.x1 - size, diamond.y2],
                ['Z']
            ];
        },
        translate: function () {
            const series = this, options = series.options, xAxis = series.xAxis, yAxis = series.yAxis, seriesPointPadding = options.pointPadding || 0, xPad = (options.colsize || 1), yPad = (options.rowsize || 1) / 2;
            let yShift;
            series.generatePoints();
            for (const point of series.points) {
                let x1 = clamp(Math.round(xAxis.len -
                    xAxis.translate(point.x - xPad, 0, 1, 0, 0)), -xAxis.len, 2 * xAxis.len), x3 = clamp(Math.round(xAxis.len -
                    xAxis.translate(point.x + xPad, 0, 1, 0, 0)), -xAxis.len, 2 * xAxis.len), y1 = clamp(Math.round(yAxis.translate(point.y - yPad, 0, 1, 0, 0)), -yAxis.len, 2 * yAxis.len), y2 = clamp(Math.round(yAxis.translate(point.y, 0, 1, 0, 0)), -yAxis.len, 2 * yAxis.len), y3 = clamp(Math.round(yAxis.translate(point.y + yPad, 0, 1, 0, 0)), -yAxis.len, 2 * yAxis.len);
                const x2 = clamp(Math.round(xAxis.len -
                    xAxis.translate(point.x, 0, 1, 0, 0)), -xAxis.len, 2 * xAxis.len), pointPadding = pick(point.pointPadding, seriesPointPadding), 
                // We calculate the point padding of the midpoints to
                // preserve the angles of the shape.
                midPointPadding = pointPadding *
                    Math.abs(x2 - x1) / Math.abs(y3 - y2), xPointPadding = xAxis.reversed ?
                    -midPointPadding : midPointPadding, yPointPadding = yAxis.reversed ?
                    -pointPadding : pointPadding;
                // Shift y-values for every second grid column
                // We have to reverse the shift for reversed y-axes
                if (point.x % 2) {
                    yShift = Math.abs(y3 - y1) / 2 * (yAxis.reversed ? -1 : 1);
                    y1 += yShift;
                    y2 += yShift;
                    y3 += yShift;
                }
                // Set plotX and plotY for use in K-D-Tree and more
                point.plotX = point.clientX = x2;
                point.plotY = y2;
                // Apply point padding to translated coordinates
                x1 += xPointPadding;
                x3 -= xPointPadding;
                y1 -= yPointPadding;
                y3 += yPointPadding;
                // Store points for halo creation
                point.tileEdges = {
                    x1: x1, x2: x2, x3: x3, y1: y1, y2: y2, y3: y3
                };
                // Set this point's shape parameters
                point.shapeType = 'path';
                point.shapeArgs = {
                    d: [
                        ['M', x2, y1],
                        ['L', x3, y2],
                        ['L', x2, y3],
                        ['L', x1, y2],
                        ['Z']
                    ]
                };
            }
            series.translateColors();
        }
    },
    // Circle shape type.
    circle: {
        alignDataLabel: ScatterSeries.prototype.alignDataLabel,
        getSeriesPadding: function (series) {
            return tilePaddingFromTileSize(series, 2, 2);
        },
        haloPath: function (size) {
            return ScatterSeries.prototype.pointClass.prototype.haloPath
                .call(this, size + (size && this.radius));
        },
        translate: function () {
            const series = this, options = series.options, xAxis = series.xAxis, yAxis = series.yAxis, seriesPointPadding = options.pointPadding || 0, yRadius = (options.rowsize || 1) / 2, colsize = (options.colsize || 1);
            let colsizePx, yRadiusPx, xRadiusPx, radius, forceNextRadiusCompute = false;
            series.generatePoints();
            for (const point of series.points) {
                const x = clamp(Math.round(xAxis.len -
                    xAxis.translate(point.x, 0, 1, 0, 0)), -xAxis.len, 2 * xAxis.len);
                let pointPadding = seriesPointPadding, hasPerPointPadding = false, y = clamp(Math.round(yAxis.translate(point.y, 0, 1, 0, 0)), -yAxis.len, 2 * yAxis.len);
                // If there is point padding defined on a single point, add it
                if (typeof point.pointPadding !== 'undefined') {
                    pointPadding = point.pointPadding;
                    hasPerPointPadding = true;
                    forceNextRadiusCompute = true;
                }
                // Find radius if not found already.
                // Use the smallest one (x vs y) to avoid overlap.
                // Note that the radius will be recomputed for each series.
                // Ideal (max) x radius is dependent on y radius:
                /*
                                * (circle 2)

                                        * (circle 3)
                                        |    yRadiusPx
                    (circle 1)    *-------|
                                 colsizePx

                    The distance between circle 1 and 3 (and circle 2 and 3) is
                    2r, which is the hypotenuse of the triangle created by
                    colsizePx and yRadiusPx. If the distance between circle 2
                    and circle 1 is less than 2r, we use half of that distance
                    instead (yRadiusPx).
                */
                if (!radius || forceNextRadiusCompute) {
                    colsizePx = Math.abs(clamp(Math.floor(xAxis.len -
                        xAxis.translate(point.x + colsize, 0, 1, 0, 0)), -xAxis.len, 2 * xAxis.len) - x);
                    yRadiusPx = Math.abs(clamp(Math.floor(yAxis.translate(point.y + yRadius, 0, 1, 0, 0)), -yAxis.len, 2 * yAxis.len) - y);
                    xRadiusPx = Math.floor(Math.sqrt((colsizePx * colsizePx + yRadiusPx * yRadiusPx)) / 2);
                    radius = Math.min(colsizePx, xRadiusPx, yRadiusPx) - pointPadding;
                    // If we have per point padding we need to always compute
                    // the radius for this point and the next. If we used to
                    // have per point padding but don't anymore, don't force
                    // compute next radius.
                    if (forceNextRadiusCompute && !hasPerPointPadding) {
                        forceNextRadiusCompute = false;
                    }
                }
                // Shift y-values for every second grid column.
                // Note that we always use the optimal y axis radius for this.
                // Also note: We have to reverse the shift for reversed y-axes.
                if (point.x % 2) {
                    y += yRadiusPx * (yAxis.reversed ? -1 : 1);
                }
                // Set plotX and plotY for use in K-D-Tree and more
                point.plotX = point.clientX = x;
                point.plotY = y;
                // Save radius for halo
                point.radius = radius;
                // Set this point's shape parameters
                point.shapeType = 'circle';
                point.shapeArgs = {
                    x: x,
                    y: y,
                    r: radius
                };
            }
            series.translateColors();
        }
    },
    // Square shape type.
    square: {
        alignDataLabel: HeatmapSeries.prototype.alignDataLabel,
        translate: HeatmapSeries.prototype.translate,
        getSeriesPadding: noop,
        haloPath: HeatmapSeries.prototype.pointClass.prototype.haloPath
    }
};
/* *
 *
 *  Default Export
 *
 * */
export default TilemapShapes;




© 2015 - 2024 Weber Informatics LLC | Privacy Policy