All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ow.yesworkflow.0.2.0.source-code.example.py Maven / Gradle / Ivy


import netCDF4
import numpy as np
from netCDF4 import ma
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages

# @BEGIN main
# @PARAM db_pth
# @PARAM fmodel
# @IN input_mask_file  @URI file:{db_pth}/land_water_mask/LandWaterMask_Global_CRUNCEP.nc
# @IN input_data_file  @URI file:{db_pth}/NEE_first_year.nc
# @OUT result_NEE_pdf  @URI file:result_NEE.pdf

def main(db_pth = '.', fmodel = 'clm'):

    # @BEGIN fetch_mask
    # @PARAM db_pth
    # @IN g  @AS input_mask_file  @URI file:{db_pth}/land_water_mask/LandWaterMask_Global_CRUNCEP.nc
    # @OUT mask  @AS land_water_mask
    g = netCDF4.Dataset(db_pth+'/land_water_mask/LandWaterMask_Global_CRUNCEP.nc', 'r')
    mask = g.variables['land_water_mask']
    mask = mask[:].swapaxes(0,1)
    # @END fetch_mask
    
    
    # @BEGIN load_data
    # @PARAM db_pth
    # @IN input_data_file  @URI file:{db_pth}/NEE_first_year.nc
    # @OUT data  @AS NEE_data
    f = netCDF4.Dataset(db_pth+'/NEE_first_year.nc', 'r')
    data = f.variables['NEE']
    data = data[:]
    data = data.swapaxes(0,2)
    adj = 60*60*24*(365/12)*1000
    data = data*adj
    # @END load_data


    # @BEGIN standardize_with_mask
    # @IN data @AS NEE_data
    # @IN mask @AS land_water_mask
    # @OUT data @AS standardized_NEE_data
    native = data.mean(2)
    latShape = mask.shape[0]
    logShape = mask.shape[1]
    for x in range(latShape):
        for y in range(logShape):
            if mask[x,y] == 1 and ma.getmask(native[x,y]) == 1:
                for index in range(data.shape[2]):
                    data[x,y,index] = 0
    # @END standardize_with_mask
    

    # @BEGIN simple_diagnose
    # @PARAM fmodel
    # @IN data @AS standardized_NEE_data
    # @OUT pp  @AS result_NEE_pdf  @URI file:result_NEE.pdf
    plt.imshow(np.mean(data,2))
    plt.xlabel("Mean 1982-2010 NEE [gC/m2/mon]")
    plt.title(fmodel + ":BG1")
    pp = PdfPages('result_NEE.pdf')
    pp.savefig()
    pp.close()    
    # @END simple_diagnose

# @END main




© 2015 - 2024 Weber Informatics LLC | Privacy Policy