All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download JAR files tagged by classifier with all dependencies

Search JAR files by class name

classificationViaClustering from group nz.ac.waikato.cms.weka (version 1.0.7)

A simple meta-classifier that uses a clusterer for classification. For cluster algorithms that use a fixed number of clusterers, like SimpleKMeans, the user has to make sure that the number of clusters to generate are the same as the number of class labels in the dataset in order to obtain a useful model. Note: at prediction time, a missing value is returned if no cluster is found for the instance. The code is based on the 'clusters to classes' functionality of the weka.clusterers.ClusterEvaluation class by Mark Hall.

Group: nz.ac.waikato.cms.weka Artifact: classificationViaClustering
Show all versions Show documentation Show source 
 

2 downloads
Artifact classificationViaClustering
Group nz.ac.waikato.cms.weka
Version 1.0.7
Last update 26. November 2017
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/classificationViaClustering
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

DTNB from group nz.ac.waikato.cms.weka (version 1.0.3)

Class for building and using a decision table/naive bayes hybrid classifier. At each point in the search, the algorithm evaluates the merit of dividing the attributes into two disjoint subsets: one for the decision table, the other for naive Bayes. A forward selection search is used, where at each step, selected attributes are modeled by naive Bayes and the remainder by the decision table, and all attributes are modelled by the decision table initially. At each step, the algorithm also considers dropping an attribute entirely from the model. For more information, see: Mark Hall, Eibe Frank: Combining Naive Bayes and Decision Tables. In: Proceedings of the 21st Florida Artificial Intelligence Society Conference (FLAIRS), 318-319, 2008.

Group: nz.ac.waikato.cms.weka Artifact: DTNB
Show all versions Show documentation Show source 
 

0 downloads
Artifact DTNB
Group nz.ac.waikato.cms.weka
Version 1.0.3
Last update 30. April 2014
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/DTNB
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

dagging from group nz.ac.waikato.cms.weka (version 1.0.3)

This meta classifier creates a number of disjoint, stratified folds out of the data and feeds each chunk of data to a copy of the supplied base classifier. Predictions are made via majority vote, since all the generated base classifiers are put into the Vote meta classifier. Useful for base classifiers that are quadratic or worse in time behavior, regarding number of instances in the training data. For more information, see: Ting, K. M., Witten, I. H.: Stacking Bagged and Dagged Models. In: Fourteenth international Conference on Machine Learning, San Francisco, CA, 367-375, 1997.

Group: nz.ac.waikato.cms.weka Artifact: dagging
Show all versions Show documentation Show source 
 

2 downloads
Artifact dagging
Group nz.ac.waikato.cms.weka
Version 1.0.3
Last update 29. April 2014
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/dagging
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

bestFirstTree from group nz.ac.waikato.cms.weka (version 1.0.4)

Class for building a best-first decision tree classifier. This class uses binary split for both nominal and numeric attributes. For missing values, the method of 'fractional' instances is used. For more information, see: Haijian Shi (2007). Best-first decision tree learning. Hamilton, NZ. Jerome Friedman, Trevor Hastie, Robert Tibshirani (2000). Additive logistic regression : A statistical view of boosting. Annals of statistics. 28(2):337-407.

Group: nz.ac.waikato.cms.weka Artifact: bestFirstTree
Show all versions Show documentation Show source 
 

1 downloads
Artifact bestFirstTree
Group nz.ac.waikato.cms.weka
Version 1.0.4
Last update 27. April 2014
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/bestFirstTree
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

userClassifier from group nz.ac.waikato.cms.weka (version 1.0.3)

Interactively classify through visual means. You are Presented with a scatter graph of the data against two user selectable attributes, as well as a view of the decision tree. You can create binary splits by creating polygons around data plotted on the scatter graph, as well as by allowing another classifier to take over at points in the decision tree should you see fit. For more information see: Malcolm Ware, Eibe Frank, Geoffrey Holmes, Mark Hall, Ian H. Witten (2001). Interactive machine learning: letting users build classifiers. Int. J. Hum.-Comput. Stud. 55(3):281-292.

Group: nz.ac.waikato.cms.weka Artifact: userClassifier
Show all versions Show documentation Show source 
 

2 downloads
Artifact userClassifier
Group nz.ac.waikato.cms.weka
Version 1.0.3
Last update 25. April 2014
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/userClassifier
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

kernelLogisticRegression from group nz.ac.waikato.cms.weka (version 1.0.0)

This package contains a classifier that can be used to train a two-class kernel logistic regression model with the kernel functions that are available in WEKA. It optimises the negative log-likelihood with a quadratic penalty. Both, BFGS and conjugate gradient descent, are available as optimisation methods, but the former is normally faster. It is possible to use multiple threads, but the speed-up is generally very marginal when used with BFGS optimisation. With conjugate gradient descent optimisation, greater speed-ups can be achieved when using multiple threads. With the default kernel, the dot product kernel, this method produces results that are close to identical to those obtained using standard logistic regression in WEKA, provided a sufficiently large value for the parameter determining the size of the quadratic penalty is used in both cases.

Group: nz.ac.waikato.cms.weka Artifact: kernelLogisticRegression
Show documentation Show source 
 

0 downloads
Artifact kernelLogisticRegression
Group nz.ac.waikato.cms.weka
Version 1.0.0
Last update 26. June 2013
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/kernelLogisticRegression
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

metaCost from group nz.ac.waikato.cms.weka (version 1.0.3)

This metaclassifier makes its base classifier cost-sensitive using the method specified in Pedro Domingos: MetaCost: A general method for making classifiers cost-sensitive. In: Fifth International Conference on Knowledge Discovery and Data Mining, 155-164, 1999. This classifier should produce similar results to one created by passing the base learner to Bagging, which is in turn passed to a CostSensitiveClassifier operating on minimum expected cost. The difference is that MetaCost produces a single cost-sensitive classifier of the base learner, giving the benefits of fast classification and interpretable output (if the base learner itself is interpretable). This implementation uses all bagging iterations when reclassifying training data (the MetaCost paper reports a marginal improvement when only those iterations containing each training instance are used in reclassifying that instance).

Group: nz.ac.waikato.cms.weka Artifact: metaCost
Show all versions Show documentation Show source 
 

0 downloads
Artifact metaCost
Group nz.ac.waikato.cms.weka
Version 1.0.3
Last update 06. February 2013
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/metaCost
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

multiBoostAB from group nz.ac.waikato.cms.weka (version 1.0.2)

Class for boosting a classifier using the MultiBoosting method. MultiBoosting is an extension to the highly successful AdaBoost technique for forming decision committees. MultiBoosting can be viewed as combining AdaBoost with wagging. It is able to harness both AdaBoost's high bias and variance reduction with wagging's superior variance reduction. Using C4.5 as the base learning algorithm, Multi-boosting is demonstrated to produce decision committees with lower error than either AdaBoost or wagging significantly more often than the reverse over a large representative cross-section of UCI data sets. It offers the further advantage over AdaBoost of suiting parallel execution. For more information, see Geoffrey I. Webb (2000). MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning. Vol.40(No.2).

Group: nz.ac.waikato.cms.weka Artifact: multiBoostAB
Show all versions Show documentation Show source 
 

0 downloads
Artifact multiBoostAB
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/multiBoostAB
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

lazyBayesianRules from group nz.ac.waikato.cms.weka (version 1.0.2)

Lazy Bayesian Rules Classifier. The naive Bayesian classifier provides a simple and effective approach to classifier learning, but its attribute independence assumption is often violated in the real world. Lazy Bayesian Rules selectively relaxes the independence assumption, achieving lower error rates over a range of learning tasks. LBR defers processing to classification time, making it a highly efficient and accurate classification algorithm when small numbers of objects are to be classified. For more information, see: Zijian Zheng, G. Webb (2000). Lazy Learning of Bayesian Rules. Machine Learning. 4(1):53-84.

Group: nz.ac.waikato.cms.weka Artifact: lazyBayesianRules
Show all versions Show documentation Show source 
 

0 downloads
Artifact lazyBayesianRules
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/lazyBayesianRules
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!

fuzzyLaticeReasoning from group nz.ac.waikato.cms.weka (version 1.0.2)

The Fuzzy Lattice Reasoning Classifier uses the notion of Fuzzy Lattices for creating a Reasoning Environment. The current version can be used for classification using numeric predictors. For more information see: I. N. Athanasiadis, V. G. Kaburlasos, P. A. Mitkas, V. Petridis: Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support. In: 1st Intl. NAISO Symposium on Information Technologies in Environmental Engineering (ITEE-2003), Gdansk, Poland, 2003; V. G. Kaburlasos, I. N. Athanasiadis, P. A. Mitkas, V. Petridis (2003). Fuzzy Lattice Reasoning (FLR) Classifier and its Application on Improved Estimation of Ambient Ozone Concentration.

Group: nz.ac.waikato.cms.weka Artifact: fuzzyLaticeReasoning
Show all versions Show documentation Show source 
 

0 downloads
Artifact fuzzyLaticeReasoning
Group nz.ac.waikato.cms.weka
Version 1.0.2
Last update 26. April 2012
Organization University of Waikato, Hamilton, NZ
URL http://weka.sourceforge.net/doc.packages/fuzzyLaticeReasoning
License GNU General Public License 3
Dependencies amount 1
Dependencies weka-dev,
There are maybe transitive dependencies!



Page 7 from 3 (items total 74)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy