Download JAR files tagged by supports with all dependencies
git-commit-id-plugin from group at.molindo (version 2.1.10-alpha-1)
git-commit-id-plugin is a plugin quite similar to
https://fisheye.codehaus.org/browse/mojo/tags/buildnumber-maven-plugin-1.0-beta-4 for example but as buildnumber
only supports svn (which is very sad) and cvs (which is even more sad).
This plugin makes basic repository information available through maven resources. This can be used to display
"what version is this?" or "who has deployed this and when, from which branch?" information at runtime - making
it easy to find things like "oh, that isn't deployed yet, I'll test it tomorrow" and making both testers and
developers life easier.
The data currently exported is like this (that's the end effect from the GitRepositoryState Bean):
{
"branch" : "testing-maven-git-plugin",
"commitTime" : "06.01.1970 @ 16:16:26 CET",
"commitId" : "787e39f61f99110e74deed68ab9093088d64b969",
"commitUserName" : "Konrad Malawski",
"commitUserEmail" : "[email protected]",
"commitMessageFull" : "releasing my fun plugin :-) + fixed some typos + cleaned up directory structure + added
license etc",
"commitMessageShort" : "releasing my fun plugin :-)",
"buildTime" : "06.01.1970 @ 16:17:53 CET",
"buildUserName" : "Konrad Malawski",
"buildUserEmail" : "[email protected]"
}
Note that the data is exported via maven resource filtering and is really easy to use with spring -
which I've explained in detail in this readme https://github.com/ktoso/maven-git-commit-id-plugin
Artifact git-commit-id-plugin
Group at.molindo
Version 2.1.10-alpha-1
Last update 28. December 2015
Organization not specified
URL http://www.blog.project13.pl
License GNU Lesser General Public License 3.0
Dependencies amount 8
Dependencies maven-plugin-api, maven-project, jackson-databind, guice, joda-time, guava, annotations, org.eclipse.jgit,
There are maybe transitive dependencies!
Group at.molindo
Version 2.1.10-alpha-1
Last update 28. December 2015
Organization not specified
URL http://www.blog.project13.pl
License GNU Lesser General Public License 3.0
Dependencies amount 8
Dependencies maven-plugin-api, maven-project, jackson-databind, guice, joda-time, guava, annotations, org.eclipse.jgit,
There are maybe transitive dependencies!
ironpdf from group com.ironsoftware (version 2024.9.1)
IronPDF Java library offers an extensive compatibility range, making it a go-to solution for a wide array of developers. It fully supports JVM languages like Java, Scala, and Kotlin, making it incredibly versatile. This Java PDF library is also compatible with Java 8 and above, providing optimum performance across multiple platforms. It's been designed with a wide range of users in mind Here's a look at what it supports: JVM Languages: Java, Scala, Kotlin.Platforms: Java 8 and above.Operating Systems: Microsoft Windows, Linux, Docker, Azure, AWS.IDEs: Jetbrains IntelliJ IDEA, Eclipse. You can deploy IronPDF Java across various platforms, including Microsoft Windows, Linux, Docker, Azure, and AWS. It is also fully compatible with popular IDEs like Jetbrains IntelliJ IDEA and Eclipse, facilitating smooth project development and management. Your pom.xml file is essentially the backbone of your project when you're using Maven. It's here where you introduce new dependencies that you wish to include. To make IronPDF Java package a part of your Maven project, you simply need to add the following snippets to your pom.xml: Remember to replace '20xx.xx.xxxx' with the latest version of IronPDF. IronPDF Java simplifies the process of creating PDF files. Convert HTML files, HTML strings, or URLs directly to new PDF documents in a few lines of code. The variety of file formats it handles is vast, as it can even transform images into PDF documents and vice versa. Need to use base 64 encoding, base URLs, or custom file paths? No problem! IronPDF Java has got you coveredFor more detail about installing and using IronPDF Java. When you run your project for the first time post-integration, IronPDF's engine binaries will automatically be downloaded. The engine starts its journey when you call any IronPDF function for the first time and takes a breather when your application is either closed or enters an idle state. It is not an open source java PDF library but here's the best part - IronPDF Java is offering a 30-day free trial. So, why wait? Give it a go and boost your PDF operations today.
0 downloads
Artifact ironpdf
Group com.ironsoftware
Version 2024.9.1
Last update 17. September 2024
Organization Iron Software
URL https://ironpdf.com/java/
License Proprietary License
Dependencies amount 8
Dependencies commons-io, commons-lang3, grpc-netty-shaded, grpc-protobuf, grpc-stub, grpc-protobuf, javax.annotation-api, slf4j-api,
There are maybe transitive dependencies!
Group com.ironsoftware
Version 2024.9.1
Last update 17. September 2024
Organization Iron Software
URL https://ironpdf.com/java/
License Proprietary License
Dependencies amount 8
Dependencies commons-io, commons-lang3, grpc-netty-shaded, grpc-protobuf, grpc-stub, grpc-protobuf, javax.annotation-api, slf4j-api,
There are maybe transitive dependencies!
chips-n-salsa from group org.cicirello (version 7.0.0)
Chips-n-Salsa is a Java library of customizable,
hybridizable, iterative, parallel, stochastic, and self-adaptive
local search algorithms. The library includes implementations of
several stochastic local search algorithms, including simulated
annealing, hill climbers, as well as constructive search algorithms
such as stochastic sampling. Chips-n-Salsa now also includes genetic
algorithms as well as evolutionary algorithms more generally. The
library very extensively supports simulated annealing. It includes
several classes for representing solutions to a variety of optimization
problems. For example, the library includes a BitVector class that
implements vectors of bits, as well as classes for representing
solutions to problems where we are searching for an optimal vector
of integers or reals. For each of the built-in representations, the
library provides the most common mutation operators for generating
random neighbors of candidate solutions, as well as common crossover
operators for use with evolutionary algorithms. Additionally, the
library provides extensive support for permutation optimization
problems, including implementations of many different mutation
operators for permutations, and utilizing the efficiently implemented
Permutation class of the JavaPermutationTools (JPT) library.
Chips-n-Salsa is customizable, making extensive use of Java's generic
types, enabling using the library to optimize other types of representations
beyond what is provided in the library. It is hybridizable, providing
support for integrating multiple forms of local search (e.g., using a hill
climber on a solution generated by simulated annealing), creating hybrid
mutation operators (e.g., local search using multiple mutation operators),
as well as support for running more than one type of search for the same
problem concurrently using multiple threads as a form of algorithm portfolio.
Chips-n-Salsa is iterative, with support for multistart metaheuristics,
including implementations of several restart schedules for varying the run
lengths across the restarts. It also supports parallel execution of multiple
instances of the same, or different, stochastic local search algorithms for
an instance of a problem to accelerate the search process. The library
supports self-adaptive search in a variety of ways, such as including
implementations of adaptive annealing schedules for simulated annealing,
such as the Modified Lam schedule, implementations of the simpler annealing
schedules but which self-tune the initial temperature and other parameters,
and restart schedules that adapt to run length.
0 downloads
Artifact chips-n-salsa
Group org.cicirello
Version 7.0.0
Last update 01. August 2024
Organization Cicirello.Org
URL https://chips-n-salsa.cicirello.org/
License GPL-3.0-or-later
Dependencies amount 3
Dependencies jpt, rho-mu, core,
There are maybe transitive dependencies!
Group org.cicirello
Version 7.0.0
Last update 01. August 2024
Organization Cicirello.Org
URL https://chips-n-salsa.cicirello.org/
License GPL-3.0-or-later
Dependencies amount 3
Dependencies jpt, rho-mu, core,
There are maybe transitive dependencies!
mahout from group org.apache.mahout (version 14.1)
Mahout's goal is to build scalable machine learning libraries. With scalable we mean: Scalable to
reasonably large data sets. Our core algorithms for clustering, classification and batch based collaborative
filtering are implemented on top of Apache Hadoop using the map/reduce paradigm. However we do not restrict
contributions to Hadoop based implementations: Contributions that run on a single node or on a non-Hadoop
cluster are welcome as well. The core libraries are highly optimized to allow for good performance also for
non-distributed algorithms. Scalable to support your business case. Mahout is distributed under a commercially
friendly Apache Software license. Scalable community. The goal of Mahout is to build a vibrant, responsive,
diverse community to facilitate discussions not only on the project itself but also on potential use cases. Come
to the mailing lists to find out more. Currently Mahout supports mainly four use cases: Recommendation mining
takes users' behavior and from that tries to find items users might like. Clustering takes e.g. text documents
and groups them into groups of topically related documents. Classification learns from existing categorized
documents what documents of a specific category look like and is able to assign unlabelled documents to the
(hopefully) correct category. Frequent itemset mining takes a set of item groups (terms in a query session,
shopping cart content) and identifies, which individual items usually appear together.
Group: org.apache.mahout Artifact: mahout
Show all versions
Show all versions
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact mahout
Group org.apache.mahout
Version 14.1
Last update 16. July 2020
Organization The Apache Software Foundation
URL http://mahout.apache.org
License Apache License, Version 2.0
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
Group org.apache.mahout
Version 14.1
Last update 16. July 2020
Organization The Apache Software Foundation
URL http://mahout.apache.org
License Apache License, Version 2.0
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
jsgen from group com.github.jochenw (version 1.2)
Jsgen is a Java Source Generation Framework: That means, it should be a valuable tool, if you intend to write a custom generator for Java
sources.
As such, it is the successor of a previous framework, called JaxMeJS (http://jaxme.sourceforge.net/JaxMeJS/docs/index.html).
The predecessor came into being as a standalone project. It was incorporated into the bigger JaxMe project, when the latter
was adopted by the Apache Webservices project. And it was buried as part of the bigger project, when the latter was moved to the
Apache Attic (http://svn.apache.org/repos/asf/webservices/archive/jaxme/).
That was fine for quite some time, because the latest released version (JaxMeJS 0.5.2) did its job quite well.
Over the years, however, the Java language has evolved, and the lack of support for features like Generics, or
Annotations, became a burden. Hence the Successor: Jsgen picks up, where JaxMeJS ended. It is, however, a complete
rewrite with several additional features, that the author considers to be important for modern Java applications:
1. It supports Generics.
2. It supports Annotations.
3. The builder pattern has been adopted. Almost all important classes are implemented as builders.
This should make writing the actual source generators much more concise, and maintainable, than
it used to be before.
4. The code style is configurable. Code styles allow you to concentrate on the actual work.
The resulting Jave source will look nicely formatted, anyways. As of this writing, you
can select between two builtin code styles:
- The default code style is basically the authors personal free style, roughly comparable to the default
code style of the Eclipse Java IDE.
- As an alternative, there is also a Maven code style, which is widely used in the Open Source communities.
Compared to the default style, it is less concise, if not even a bit verbose. On the other hand, it is
widely adopted by projects in the vicinity of {{{https://maven.apache.org}Apache Maven}}.
5. Import lists are created, and sorted, automatically.
Artifact jsgen
Group com.github.jochenw
Version 1.2
Last update 10. November 2019
Organization not specified
URL https://jochenw.github.io/jsgen
License Apache License, Version 2.0
Dependencies amount 1
Dependencies jsr305,
There are maybe transitive dependencies!
Group com.github.jochenw
Version 1.2
Last update 10. November 2019
Organization not specified
URL https://jochenw.github.io/jsgen
License Apache License, Version 2.0
Dependencies amount 1
Dependencies jsr305,
There are maybe transitive dependencies!
mahout-eclipse-support from group org.apache.mahout (version 0.5)
Artifact mahout-eclipse-support
Group org.apache.mahout
Version 0.5
Last update 28. May 2011
Organization not specified
URL Not specified
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
Group org.apache.mahout
Version 0.5
Last update 28. May 2011
Organization not specified
URL Not specified
License not specified
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
mahout-parent from group org.apache.mahout (version 0.3)
Mahout's goal is to build scalable machine learning libraries. With scalable we mean: Scalable to reasonably large data sets. Our core algorithms for clustering, classfication and batch based collaborative filtering are implemented on top of Apache Hadoop using the map/reduce paradigm. However we do not restrict contributions to Hadoop based implementations: Contributions that run on a single node or on a non-Hadoop cluster are welcome as well. The core libraries are highly optimized to allow for good performance also for non-distributed algorithms. Scalable to support your business case. Mahout is distributed under a commercially friendly Apache Software license. Scalable community. The goal of Mahout is to build a vibrant, responsive, diverse community to facilitate discussions not only on the project itself but also on potential use cases. Come to the mailing lists to find out more. Currently Mahout supports mainly four use cases: Recommendation mining takes users' behavior and from that tries to find items users might like. Clustering takes e.g. text documents and groups them into groups of topically related documents. Classification learns from exisiting categorized documents what documents of a specific category look like and is able to assign unlabelled documents to the (hopefully) correct category. Frequent itemset mining takes a set of item groups (terms in a query session, shopping cart content) and identifies, which individual items usually appear together.
Group: org.apache.mahout Artifact: mahout-parent
Show all versions
Show all versions
There is no JAR file uploaded. A download is not possible! Please choose another version.
0 downloads
Artifact mahout-parent
Group org.apache.mahout
Version 0.3
Last update 12. March 2010
Organization The Apache Software Foundation
URL http://lucene.apache.org/mahout
License The Apache Software License, Version 2.0
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
Group org.apache.mahout
Version 0.3
Last update 12. March 2010
Organization The Apache Software Foundation
URL http://lucene.apache.org/mahout
License The Apache Software License, Version 2.0
Dependencies amount 0
Dependencies No dependencies
There are maybe transitive dependencies!
pact-jvm-provider-spring_2.12 from group au.com.dius (version 3.6.15)
# Pact Spring/JUnit runner
## Overview
Library provides ability to play contract tests against a provider using Spring & JUnit.
This library is based on and references the JUnit package, so see the [Pact JUnit 4](../pact-jvm-provider-junit) or [Pact JUnit 5](../pact-jvm-provider-junit5) providers for more details regarding configuration using JUnit.
Supports:
- Standard ways to load pacts from folders and broker
- Easy way to change assertion strategy
- Spring Test MockMVC Controllers and ControllerAdvice using MockMvc standalone setup.
- MockMvc debugger output
- Multiple @State runs to test a particular Provider State multiple times
- **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change,
all methods annotated by `@State` with appropriate the state listed will be invoked.
**NOTE:** For publishing provider verification results to a pact broker, make sure the Java system property `pact.provider.version`
is set with the version of your provider.
## Example of MockMvc test
```java
@RunWith(RestPactRunner.class) // Custom pact runner, child of PactRunner which runs only REST tests
@Provider("myAwesomeService") // Set up name of tested provider
@PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation)
public class ContractTest {
//Create an instance of your controller. We cannot autowire this as we're not using (and don't want to use) a Spring test runner.
@InjectMocks
private AwesomeController awesomeController = new AwesomeController();
//Mock your service logic class. We'll use this to create scenarios for respective provider states.
@Mock
private AwesomeBusinessLogic awesomeBusinessLogic;
//Create an instance of your controller advice (if you have one). This will be passed to the MockMvcTarget constructor to be wired up with MockMvc.
@InjectMocks
private AwesomeControllerAdvice awesomeControllerAdvice = new AwesomeControllerAdvice();
//Create a new instance of the MockMvcTarget and annotate it as the TestTarget for PactRunner
@TestTarget
public final MockMvcTarget target = new MockMvcTarget();
@Before //Method will be run before each test of interaction
public void before() {
//initialize your mocks using your mocking framework
MockitoAnnotations.initMocks(this);
//configure the MockMvcTarget with your controller and controller advice
target.setControllers(awesomeController);
target.setControllerAdvice(awesomeControllerAdvice);
}
@State("default", "no-data") // Method will be run before testing interactions that require "default" or "no-data" state
public void toDefaultState() {
target.setRunTimes(3); //let's loop through this state a few times for a 3 data variants
when(awesomeBusinessLogic.getById(any(UUID.class)))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.ONE))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.TWO))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.THREE));
}
@State("error-case")
public void SingleUploadExistsState_Success() {
target.setRunTimes(1); //tell the runner to only loop one time for this state
//you might want to throw exceptions to be picked off by your controller advice
when(awesomeBusinessLogic.getById(any(UUID.class)))
.then(i -> { throw new NotCoolException(i.getArgumentAt(0, UUID.class).toString()); });
}
}
```
## Using a Spring runner (version 3.5.7+)
You can use `SpringRestPactRunner` instead of the default Pact runner to use the Spring test annotations. This will
allow you to inject or mock spring beans.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("pricing")
@PactBroker(protocol = "https", host = "${pactBrokerHost}", port = "443",
authentication = @PactBrokerAuth(username = "${pactBrokerUser}", password = "${pactBrokerPassword}"))
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.DEFINED_PORT)
public class PricingServiceProviderPactTest {
@MockBean
private ProductClient productClient; // This will replace the bean with a mock in the application context
@TestTarget
@SuppressWarnings(value = "VisibilityModifier")
public final Target target = new HttpTarget(8091);
@State("Product X010000021 exists")
public void setupProductX010000021() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X010000021");
when(productClient.fetch((Set<String>) argThat(contains("X010000021")), any())).thenReturn(product);
}
@State("the product code X00001 can be priced")
public void theProductCodeX00001CanBePriced() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X00001");
when(productClient.find((Set<String>) argThat(contains("X00001")), any())).thenReturn(product);
}
}
```
### Using Spring Context Properties (version 3.5.14+)
From version 3.5.14 onwards, the SpringRestPactRunner will look up any annotation expressions (like `${pactBrokerHost}`)
above) from the Spring context. For Springboot, this will allow you to define the properties in the application test properties.
For instance, if you create the following `application.yml` in the test resources:
```yaml
pactbroker:
host: "your.broker.local"
port: "443"
protocol: "https"
auth:
username: "<your broker username>"
password: "<your broker password>"
```
Then you can use the defaults on the `@PactBroker` annotation.
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker(
authentication = @PactBrokerAuth(username = "${pactbroker.auth.username}", password = "${pactbroker.auth.password}")
)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
```
### Using a random port with a Springboot test (version 3.5.14+)
If you use a random port in a springboot test (by setting `SpringBootTest.WebEnvironment.RANDOM_PORT`), you can use the
`SpringBootHttpTarget` which will get the application port from the spring application context.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
@TestTarget
public final Target target = new SpringBootHttpTarget();
}
```
Group: au.com.dius Artifact: pact-jvm-provider-spring_2.12
Show all versions Show documentation Show source
Show all versions Show documentation Show source
1 downloads
Artifact pact-jvm-provider-spring_2.12
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 5
Dependencies pact-jvm-provider-junit_2.12, spring-boot-starter-test, spring-webmvc, javax.servlet-api, jackson-datatype-joda,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.6.15
Last update 29. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 5
Dependencies pact-jvm-provider-junit_2.12, spring-boot-starter-test, spring-webmvc, javax.servlet-api, jackson-datatype-joda,
There are maybe transitive dependencies!
pact-jvm-provider-spring_2.11 from group au.com.dius (version 3.5.24)
# Pact Spring/JUnit runner
## Overview
Library provides ability to play contract tests against a provider using Spring & JUnit.
This library is based on and references the JUnit package, so see [junit provider support](pact-jvm-provider-junit) for more details regarding configuration using JUnit.
Supports:
- Standard ways to load pacts from folders and broker
- Easy way to change assertion strategy
- Spring Test MockMVC Controllers and ControllerAdvice using MockMvc standalone setup.
- MockMvc debugger output
- Multiple @State runs to test a particular Provider State multiple times
- **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change,
all methods annotated by `@State` with appropriate the state listed will be invoked.
**NOTE:** For publishing provider verification results to a pact broker, make sure the Java system property `pact.provider.version`
is set with the version of your provider.
## Example of MockMvc test
```java
@RunWith(RestPactRunner.class) // Custom pact runner, child of PactRunner which runs only REST tests
@Provider("myAwesomeService") // Set up name of tested provider
@PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation)
public class ContractTest {
//Create an instance of your controller. We cannot autowire this as we're not using (and don't want to use) a Spring test runner.
@InjectMocks
private AwesomeController awesomeController = new AwesomeController();
//Mock your service logic class. We'll use this to create scenarios for respective provider states.
@Mock
private AwesomeBusinessLogic awesomeBusinessLogic;
//Create an instance of your controller advice (if you have one). This will be passed to the MockMvcTarget constructor to be wired up with MockMvc.
@InjectMocks
private AwesomeControllerAdvice awesomeControllerAdvice = new AwesomeControllerAdvice();
//Create a new instance of the MockMvcTarget and annotate it as the TestTarget for PactRunner
@TestTarget
public final MockMvcTarget target = new MockMvcTarget();
@Before //Method will be run before each test of interaction
public void before() {
//initialize your mocks using your mocking framework
MockitoAnnotations.initMocks(this);
//configure the MockMvcTarget with your controller and controller advice
target.setControllers(awesomeController);
target.setControllerAdvice(awesomeControllerAdvice);
}
@State("default", "no-data") // Method will be run before testing interactions that require "default" or "no-data" state
public void toDefaultState() {
target.setRunTimes(3); //let's loop through this state a few times for a 3 data variants
when(awesomeBusinessLogic.getById(any(UUID.class)))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.ONE))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.TWO))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.THREE));
}
@State("error-case")
public void SingleUploadExistsState_Success() {
target.setRunTimes(1); //tell the runner to only loop one time for this state
//you might want to throw exceptions to be picked off by your controller advice
when(awesomeBusinessLogic.getById(any(UUID.class)))
.then(i -> { throw new NotCoolException(i.getArgumentAt(0, UUID.class).toString()); });
}
}
```
## Using a Spring runner (version 3.5.7+)
You can use `SpringRestPactRunner` instead of the default Pact runner to use the Spring test annotations. This will
allow you to inject or mock spring beans.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("pricing")
@PactBroker(protocol = "https", host = "${pactBrokerHost}", port = "443",
authentication = @PactBrokerAuth(username = "${pactBrokerUser}", password = "${pactBrokerPassword}"))
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.DEFINED_PORT)
public class PricingServiceProviderPactTest {
@MockBean
private ProductClient productClient; // This will replace the bean with a mock in the application context
@TestTarget
@SuppressWarnings(value = "VisibilityModifier")
public final Target target = new HttpTarget(8091);
@State("Product X010000021 exists")
public void setupProductX010000021() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X010000021");
when(productClient.fetch((Set<String>) argThat(contains("X010000021")), any())).thenReturn(product);
}
@State("the product code X00001 can be priced")
public void theProductCodeX00001CanBePriced() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X00001");
when(productClient.find((Set<String>) argThat(contains("X00001")), any())).thenReturn(product);
}
}
```
### Using Spring Context Properties (version 3.5.14+)
From version 3.5.14 onwards, the SpringRestPactRunner will look up any annotation expressions (like `${pactBrokerHost}`)
above) from the Spring context. For Springboot, this will allow you to define the properties in the application test properties.
For instance, if you create the following `application.yml` in the test resources:
```yaml
pactbroker:
host: "your.broker.local"
port: "443"
protocol: "https"
auth:
username: "<your broker username>"
password: "<your broker password>"
```
Then you can use the defaults on the `@PactBroker` annotation.
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker(
authentication = @PactBrokerAuth(username = "${pactbroker.auth.username}", password = "${pactbroker.auth.password}")
)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
```
### Using a random port with a Springboot test (version 3.5.14+)
If you use a random port in a springboot test (by setting `SpringBootTest.WebEnvironment.RANDOM_PORT`), you can use the
`SpringBootHttpTarget` which will get the application port from the spring application context.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
@TestTarget
public final Target target = new SpringBootHttpTarget();
}
```
Group: au.com.dius Artifact: pact-jvm-provider-spring_2.11
Show all versions Show documentation Show source
Show all versions Show documentation Show source
2 downloads
Artifact pact-jvm-provider-spring_2.11
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 13
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider-junit_2.11, spring-boot-starter-test, spring-web, spring-webmvc, javax.servlet-api, jackson-datatype-joda,
There are maybe transitive dependencies!
Group au.com.dius
Version 3.5.24
Last update 04. November 2018
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 13
Dependencies kotlin-stdlib-jdk8, kotlin-reflect, slf4j-api, groovy-all, kotlin-logging, scala-library, scala-logging_2.11, pact-jvm-provider-junit_2.11, spring-boot-starter-test, spring-web, spring-webmvc, javax.servlet-api, jackson-datatype-joda,
There are maybe transitive dependencies!
pact-jvm-provider-spring from group au.com.dius (version 4.0.10)
# Pact Spring/JUnit runner
## Overview
Library provides ability to play contract tests against a provider using Spring & JUnit.
This library is based on and references the JUnit package, so see the [Pact JUnit 4](../pact-jvm-provider-junit) or [Pact JUnit 5](../pact-jvm-provider-junit5) providers for more details regarding configuration using JUnit.
Supports:
- Standard ways to load pacts from folders and broker
- Easy way to change assertion strategy
- Spring Test MockMVC Controllers and ControllerAdvice using MockMvc standalone setup.
- MockMvc debugger output
- Multiple @State runs to test a particular Provider State multiple times
- **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change,
all methods annotated by `@State` with appropriate the state listed will be invoked.
**NOTE:** For publishing provider verification results to a pact broker, make sure the Java system property `pact.provider.version`
is set with the version of your provider.
## Example of MockMvc test
```java
@RunWith(RestPactRunner.class) // Custom pact runner, child of PactRunner which runs only REST tests
@Provider("myAwesomeService") // Set up name of tested provider
@PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation)
public class ContractTest {
//Create an instance of your controller. We cannot autowire this as we're not using (and don't want to use) a Spring test runner.
@InjectMocks
private AwesomeController awesomeController = new AwesomeController();
//Mock your service logic class. We'll use this to create scenarios for respective provider states.
@Mock
private AwesomeBusinessLogic awesomeBusinessLogic;
//Create an instance of your controller advice (if you have one). This will be passed to the MockMvcTarget constructor to be wired up with MockMvc.
@InjectMocks
private AwesomeControllerAdvice awesomeControllerAdvice = new AwesomeControllerAdvice();
//Create a new instance of the MockMvcTarget and annotate it as the TestTarget for PactRunner
@TestTarget
public final MockMvcTarget target = new MockMvcTarget();
@Before //Method will be run before each test of interaction
public void before() {
//initialize your mocks using your mocking framework
MockitoAnnotations.initMocks(this);
//configure the MockMvcTarget with your controller and controller advice
target.setControllers(awesomeController);
target.setControllerAdvice(awesomeControllerAdvice);
}
@State("default", "no-data") // Method will be run before testing interactions that require "default" or "no-data" state
public void toDefaultState() {
target.setRunTimes(3); //let's loop through this state a few times for a 3 data variants
when(awesomeBusinessLogic.getById(any(UUID.class)))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.ONE))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.TWO))
.thenReturn(myTestHelper.generateRandomReturnData(UUID.randomUUID(), ExampleEnum.THREE));
}
@State("error-case")
public void SingleUploadExistsState_Success() {
target.setRunTimes(1); //tell the runner to only loop one time for this state
//you might want to throw exceptions to be picked off by your controller advice
when(awesomeBusinessLogic.getById(any(UUID.class)))
.then(i -> { throw new NotCoolException(i.getArgumentAt(0, UUID.class).toString()); });
}
}
```
## Using Spring runners
You can use `SpringRestPactRunner` or `SpringMessagePactRunner` instead of the default Pact runner to use the Spring test annotations. This will
allow you to inject or mock spring beans. `SpringRestPactRunner` is for restful webapps and `SpringMessagePactRunner` is
for async message tests.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("pricing")
@PactBroker(protocol = "https", host = "${pactBrokerHost}", port = "443",
authentication = @PactBrokerAuth(username = "${pactBrokerUser}", password = "${pactBrokerPassword}"))
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.DEFINED_PORT)
public class PricingServiceProviderPactTest {
@MockBean
private ProductClient productClient; // This will replace the bean with a mock in the application context
@TestTarget
@SuppressWarnings(value = "VisibilityModifier")
public final Target target = new HttpTarget(8091);
@State("Product X010000021 exists")
public void setupProductX010000021() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X010000021");
when(productClient.fetch((Set<String>) argThat(contains("X010000021")), any())).thenReturn(product);
}
@State("the product code X00001 can be priced")
public void theProductCodeX00001CanBePriced() throws IOException {
reset(productClient);
ProductBuilder product = new ProductBuilder()
.withProductCode("X00001");
when(productClient.find((Set<String>) argThat(contains("X00001")), any())).thenReturn(product);
}
}
```
### Using Spring Context Properties
The SpringRestPactRunner will look up any annotation expressions (like `${pactBrokerHost}`)
above) from the Spring context. For Springboot, this will allow you to define the properties in the application test properties.
For instance, if you create the following `application.yml` in the test resources:
```yaml
pactbroker:
host: "your.broker.local"
port: "443"
protocol: "https"
auth:
username: "<your broker username>"
password: "<your broker password>"
```
Then you can use the defaults on the `@PactBroker` annotation.
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker(
authentication = @PactBrokerAuth(username = "${pactbroker.auth.username}", password = "${pactbroker.auth.password}")
)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
```
### Using a random port with a Springboot test
If you use a random port in a springboot test (by setting `SpringBootTest.WebEnvironment.RANDOM_PORT`), you need to set it to the `TestTarget`. How this works is different for JUnit4 and JUnit5.
#### JUnit4
You can use the
`SpringBootHttpTarget` which will get the application port from the spring application context.
For example:
```java
@RunWith(SpringRestPactRunner.class)
@Provider("My Service")
@PactBroker
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
@TestTarget
public final Target target = new SpringBootHttpTarget();
}
```
#### JUnit5
You actually don't need to dependend on `pact-jvm-provider-spring` for this. It's sufficient to depend on `pact-jvm-provider-junit5`.
You can set the port to the `HttpTestTarget` object in the before method.
```java
@Provider("My Service")
@PactBroker
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class PactVerificationTest {
@LocalServerPort
private int port;
@BeforeEach
void before(PactVerificationContext context) {
context.setTarget(new HttpTestTarget("localhost", port));
}
}
```
Group: au.com.dius Artifact: pact-jvm-provider-spring
Show all versions Show documentation Show source
Show all versions Show documentation Show source
0 downloads
Artifact pact-jvm-provider-spring
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 5
Dependencies spring-boot-starter-test, spring-webmvc, javax.servlet-api, jackson-datatype-joda, pact-jvm-provider-junit,
There are maybe transitive dependencies!
Group au.com.dius
Version 4.0.10
Last update 18. April 2020
Organization not specified
URL https://github.com/DiUS/pact-jvm
License Apache 2
Dependencies amount 5
Dependencies spring-boot-starter-test, spring-webmvc, javax.servlet-api, jackson-datatype-joda, pact-jvm-provider-junit,
There are maybe transitive dependencies!
Page 247 from 3 (items total 2494)